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Abstract 

Background There have been methodologies developed for a wide range of longitudinal data types; neverthe-
less, the conventional growth study is restricted if individuals in the sample have heterogeneous growth trajecto-
ries across time. Using growth mixture modeling approaches, we aimed to investigate group-level heterogeneities 
in the growth trajectories of children aged 1 to 15 years.

Method This longitudinal study examined group-level growth heterogeneities in a sample of 3401 males and 3200 
females. Data were analyzed using growth mixture modeling approaches.

Results We examined different trajectories of growth change in children across four low- and middle-income coun-
tries using a data-driven growth mixture modeling technique. The study identified two-group trajectories: the most 
male samples group (n = 4260, 69.7%) and the most female samples group (n = 2341, 81.6%). The findings show 
that the two groups had different growth trajectories. Gender and country differences were shown to be related 
to growth factors; however, the association varied depending on the trajectory group. In both latent groups, females 
tended to have lower growth factors (initial height and rate of growth) than their male counterparts. Compared 
with children from Ethiopia, children from Peru and Vietnam tended to exhibit faster growth in height over time: In 
contrast, children from India showed a lower rate of change in both latent groups than that of children from Ethiopia.

Conclusions The height of children in four low- and middle-income countries showed heterogeneous changes 
over time with two different groups of growth trajectories.

Keywords Latent class growth model, Latent basis model, Latent growth analysis, Multiple-group growth model, 
Observed heterogeneity, Unobserved heterogeneity

Introduction
Describing how individuals vary over time is one of the 
main focuses in the study of development [1]. Repeated 
measurements are commonly used to study individual 

and population growth processes of stability and change 
over time [2].  Thus, selecting analytical methodolo-
gies that capture growth changes is an important point 
in longitudinal data analysis. Growth curve modeling 
has offered a set of techniques that are useful for mod-
eling between-individual variations and within-individual 
change in growth [3]. In analyzing the change process, 
it is reasonable to assume that not everyone changes in 
similar trajectories. There may be underlying classes for 
each individual, with each class having its own set of 
parameters guiding the change process, or possibly fol-
lowing distinct functional forms of change entirely [4]. 
In such instances, the application of typical longitudinal 
data analysis techniques may not give appropriate results.

*Correspondence:
Senahara Korsa Wake
senahara2004@gmail.com
1 College of Science, Bahir Dar University, Bahir Dar, Ethiopia
2 College of Natural and Computational Sciences, Ambo University, 
Ambo, Ethiopia
3 School of Mathematics, Statistics and Computer Science, University 
of KwaZulu-Natal, Durban, South Africa
4 School of Public Health, Bahir Dar University, Bahir Dar, Ethiopia

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41043-023-00425-y&domain=pdf


Page 2 of 12Wake et al. Journal of Health, Population and Nutrition           (2023) 42:78 

Growth modeling techniques, such as mixed-effects 
and latent growth models, assume that the sample is 
drawn from a single population with a single set of 
parameters (e.g., means, variances, covariance) [5, 6]. 
For a single population, covariates that explain part of 
the variances of the growth parameters (e.g., intercept 
and slope) can reflect observed variation in growth curve 
models. However, in the situation of unobserved hetero-
geneity, the assumption of a single population underlying 
the growth curves must be relaxed [2]. In contrast, mul-
tiple-group latent growth models can enable simultane-
ous modeling of change for multiple observed groups, in 
which parameters describing growth patterns are exam-
ined to see if they are invariant across groups. However, 
they require prior information about the group member-
ship of an individual and they assume various growth 
trajectories can only be examined within subgroups that 
have observed identity variables (e.g., gender, etc.). Fur-
thermore, when the group membership of an individual 
is unknown, unobserved subgroups of individuals may 
exist within the population, which may exhibit variabil-
ity in their latent trajectories. Growth mixture modeling 
is a viable approach for identifying multiple unique tra-
jectories in different unobserved subgroups. It is appro-
priate when subgroups of individuals with different 
trajectories are expected and individual group member-
ship is unknown a priori [5–7].

Growth mixture models can be considered as an exten-
sion of the multiple-group latent growth model. An indi-
vidual’s group membership can be generated from the 
information of the estimated probabilities of latent class 
[2]. Hence, the growth mixture model refers to a model 
with categorical latent variables that reflect subgroups 
where group membership is unknown, and it is known 
as a finite mixture model. The mixture represents various 
latent trajectory classes [8]. Therefore, this study aims to 
present the growth mixture modeling approach to iden-
tify groups of children with different growth trajectories 
of physical height and to examine growth differences 
across different groups of individuals.

Methods
Study sample
Longitudinal height data were obtained from the Young 
Lives cohort study carried out in Ethiopia, India, Peru 
and Vietnam from 2002 to 2016. The Young Lives study 
is a 15-year longitudinal study of the changing nature of 
childhood poverty designed to collect information on 
children growing up in four low- and middle-income 
countries. The Young Lives study employed multistage 
sampling techniques with the first stage involving a selec-
tion of sentinel locations from each country. Sentinel 
site monitoring is a public health concept that entails a 

purposive sampling of a small number of settings that are 
thought to reflect a specific population or area, and then 
being studied uniformly at relatively wide ranges. Follow-
ing that, 20 sentinel sites were selected at non-random in 
each study country. Following the selection of 20 senti-
nel sites, households with children in the appropriate age 
groups were chosen at random. This technique, which 
was implemented in 2002, resulted in the selection of 
2,000 infants (ages 6 to 18 months) at random and con-
sidered as a younger cohort. Simultaneously, 1,000 older 
children (aged 7 to 8 years) were chosen at random in the 
same sites and considered as older cohort [9, 10]. Details 
regarding sampling and participant recruitment have 
been discussed in previously published works [9, 11].

The qualitative and quantitative survey data were 
gathered in five rounds. The first survey round was car-
ried out in 2002 when the children were on average one 
year of age (younger cohort) and eight years of age (older 
cohort), the second survey was carried out in 2006, the 
third was in 2009, the fourth was in 2013, and the fifth 
was carried out in 2016. The anthropometric data were 
collected as quantitative data. Details regarding sampling 
and participant recruitment were discussed in previously 
published studies [12–18]. From a younger cohort, a total 
of 3401 males and 3200 females with measured height 5 
times from ages 1 to 15 years were included in this study. 
The Young Lives data are publicly available and can be 
accessed from http:// www. young lives. org. uk/.

Mixture models with Known group Membership
The goal of growth curve modeling is to characterize 
and test inter-individual variations in intra-individual 
change [19]. Latent growth models comprise the predic-
tion of one latent class which is defined as a single popu-
lation mean trajectory or multiple latent classes which 
are defined as one mean trajectory per class. Each latent 
group can be thought of as a collection of subjects that 
have similar growth trajectories that are not observed 
in the data [20]. In conventional growth modeling tech-
niques, the sample is taken from a single population with 
a single set of growth parameters. A growth curve model 
can be extended to investigate variations in outcome 
growth among known latent multiple groups [5, 20–22]. 
Hence, multiple-group latent growth curve modeling 
required prior knowledge about an individual’s group 
membership and the number of groups; for instance, 
gender can be divided into male group and female group, 
which are known and observed groups. Independ-
ent growth models are described for each group, which 
indicate the pattern of change, the mean change and the 
extent of between-group variations in the amount of 
change [5]. Multiple-group latent growth models [3] for g 
groups (g = 1, 2, …, G) can be expressed as follows:

http://www.younglives.org.uk/
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where

Equation  (1) can be expressed in the matrix form of 
structural equation modeling as:

where

where yti is the measured outcome for the i-th individual 
at time t = 1, 2, …, T,  α(g)i  and β(g)i  are latent variables 
representing the initial and growth rate for i-th individual 
in g group, respectively, �t represents the basis function 
for the slope component, and  εti is a time-specific resid-
ual. Individual variations in growth over time are allowed 
in this model since the growth intercept αi and slope βi 
vary across individuals, resulting in individually varying 
patterns for yti over time.

Mixture models with unknown group membership
In the multiple-group modeling approach, the group 
membership of each individual in the sample is known 
or observed. In some circumstances, observations may 
come from multiple populations with no way of identify-
ing in which population a given observation belongs to. 
When group membership of individuals is not known, 
mixture modeling gives a way for estimating models. It 
is a popular data analysis technique for detecting het-
erogeneity in a group or population through multiple 
unobserved subgroups, characterizing change over time 
within each unobserved subgroup and investigating vari-
ations in change across unobserved subgroups [5, 23]. 
This technique simultaneously classifies individuals into 
different groups and estimates the latent curves in each 
group. Individuals’ latent classes can be identified using 
longitudinal finite mixture models [8]. In finite mix-
ture models, the individual under study is considered 
to be made up of various latent classes [24]. Each class 
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represents a set of heterogeneous observations in which 
factors affect the response in different ways [20]. To cap-
ture heterogeneities in the population, the model sepa-
rates individuals into different latent classes, each with 
its functional form for the trajectory. Individuals are then 
assigned to classes depending on the degree of their simi-
larity [25] using posterior probabilities. The data are used 
to infer posterior probability for each individual in all 
classifications. To put it another way, for each individual, 
a posterior probability is calculated for each class, and 
the individual is categorized into the class with the high-
est posterior probability [22]. The model equation [3] can 
be formulated as:

where P(g)i  is the probability that the i-th individual 
belongs to the g-th group such that P

(g)
i ≥ 0 , 

G
∑

g=1

P
(g)
i = 1 , and g > 1. For continuous longitudinal out-

comes, yti is normally distributed with mean µg and vari-
ance–covariance �g , yti ∼ MVN (µg,�g) . There are two 
sources of variation in �g : between-individual variation 
given by random growth parameters (the intercept and 
slope) ( Dg ) and within-individual variation given by 
errors ( Rg ) [26].

The conventional growth modeling approach is not 
well-suited for investigating heterogeneous change in 
a single population. A growth mixture model consid-
ers that the group is made up of diverse subgroups of 
trajectories (i.e., a “mixture” of distributions), allowing 
for heterogeneous trajectories to be accommodated 
[22]. The first procedure in fitting a growth mixture 
model to the data is to estimate a conventional latent 
growth curve model to see the assumptions of homo-
geneous variance with a common growth function. Fit-
ting a latent growth curve model to the data, in this 
case, enables the study to analyze the overall fit of the 
data to a particular shape of trajectory before account-
ing for trajectory heterogeneity. The presence of het-
erogeneous trajectories, or subgroups with diverse 
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trajectories, is suggested by poor model fit and sta-
tistically significant variances in growth parameters 
[22]. To compare the fit of nested models, the likeli-
hood ratio test can be utilized. The Bayesian informa-
tion criterion (BIC) is used to determine the number 
of groups for non-nested models [21]. The number of 
groups is gradually increased until a minimum BIC is 
achieved [27].

As depicted in Fig.  1, a growth mixture model 
accounts for heterogeneity by including multiple 
groups or latent categorical variables (C) of individual 
trajectories in addition to components of the conven-
tional growth model in the same modeling approach. 
Class C can be observed or unobserved/latent classes 

which represent the latent trajectory classes that 
underpin the latent growth variables.

Results
This longitudinal study was designed to examine the 
group-specific trajectory in height growth from age 1 to 
15 years using a mixture modeling technique. Four low- 
and middle-income countries were the group variable 
of interest of the study (Ethiopia: n = 1582, 24%, India: 
n = 1648, 25%, Peru: n = 1627, 24.6%, Vietnam: n = 1744, 
26.4%). The summary of descriptive statistics for the 
endogenous variables and response frequencies for five 
measurement occasions is given in Table 1.

Fig. 1 Conditional growth mixture model for five waves of data
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The height of the children was measured in five rounds 
from 2002 to 2016. The first survey round was carried out 
in 2002 when the children were on average one year of 
age, the second survey was carried out in 2006, the third 
in 2009, the fourth in 2013, and the fifth in 2016 when 
the children were on average 15 years of age. The younger 
children were tracked from one to fifteen years, at ages 1, 
5, 8, 12 and 15 years. The mean height of children given 
in Table 1 further revealed that in all four countries, there 
are increasing tendencies of mean height from age one 
to age 15 years. However, there were variations in mean 
height changes over time among the four countries. 
On all measurement occasions from ages 1 to 15  years, 
children in Vietnam had the highest mean height, and 
children in Peru had the second highest mean height 
(Table 1).

Latent basis growth mixture model with observed groups
The first step in modeling a growth mixture is to see 
how well a single-group basic latent growth model 
fits the data [6]. The basic latent growth curve model 
assumes the growth trajectories (Fig.  4) among chil-
dren in Ethiopia, India, Peru and Vietnam differ only in 
their means intercepts, rate of growth or the impact of 
the covariates on these variables. However, the varia-
tion of intercept and slope was statistically significant 
( ψαα = 12.94, p < 0.0001 , ψββ = 0.07, p = 0.004 , respec-
tively) and the functional form of the trajectory may also 
differ. The significant variation in the growth function 
between subjects indicates the presence of heterogene-
ity in longitudinal changes of height growth. To address 
these challenges, a single latent group was extended to 
observed multiple groups with considerably different 

growth patterns from the entire estimate. Hence, a 
separate functional form and data set were established 
for each group based on the residential country of the 
children.

Figure 2 depicts the observed group patterns by coun-
tries, which represent different growth trajectories in 
different countries. In this case, we might identify four 
groups of growth trajectories (Ethiopia, India, Peru and 
Vietnam), each with its own predicted growth param-
eters. As shown in Fig. 2, the individual height of children 
in all four countries is separately displayed with nonlinear 
changes over time. The minimum and maximum heights 
in each measurement occasion were likewise displayed in 
Fig. 2. Figure 3 shows the structural equation framework 
for multiple-group unconditional growth mixture models 
for these observed groups.

Using multiple-group models, testing for multiple-
group invariance across groups was performed. For 
instance, M1: unconstrained model (no equality con-
straints imposed across the groups), M2: testing group-
varying in factor loadings, M3: testing group-varying 
in mean intercept, M4: testing group-varying in slope 
component, and M5: testing group-varying random vari-
ance ( ψαg ,ψβg ) and covariance ( ψαβg ) in latent intercept 
and slope components. The likelihood ratio test was used 
to test the invariance nature of the growth components 
across the G groups due to the nested link between a 
model with constraints and an unconstrained model. 
Table 2 shows the chi-square difference test statistics for 
these models.

The chi-square difference ( �x2 ) between the two 
nested models can be used to perform a significance 
test to see if the more restricted model fits the same as 
the less restrictive model without the restrictions. A 

Table 1 Descriptive statistics of measurement of height for five measurement occasions by countries

Age 1,…, Age 15 are children’s height measurements at age 1,…age 15 years, respectively, SD Standard deviation

Height measurement occasion (age/year)

Country/age (year) Age 1 Age 5 Age 8 Age 12 Age 15

Ethiopia Mean 71.375 104.467 121.348 141.785 156.851

SD 5.336 5.087 5.744 6.572 7.117

n 1582 1582 1582 1582 1582

India Mean 72.159 104.648 119.488 141.197 155.937

SD 4.802 4.550 5.485 6.757 7.351

n 1648 1648 1648 1648 1648

Peru Mean 71.781 104.899 120.782 143.654 157.590

SD 4.524 5.820 5.556 7.040 7.076

n 1627 1627 1627 1627 1627

Vietnam Mean 72.415 105.319 121.539 144.849 159.136

SD 4.194 4.886 5.777 7.762 7.098

n 1744 1744 1744 1744 1744
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Fig. 2 Growth trajectories for observed multiple groups

Fig. 3 Multiple-group growth mixture models for height in Ethiopia, India, Peru and Vietnam

Table 2 A summary of fit statistics for multiple-group invariance tests

�x2 = difference in chi-square values between models; �df  = difference in the number of degrees of freedom between models; M1,…, M5 = Model 1, …, Model 5, 
respectively.

Model description Comparative model X2 df �X2
�df p-value

No equality constraints imposed (M1) – 547.158 20 – – –

All factor loadings constrained equal (M2) M2 vs M1 1005.86 29 458.699 9 0.000

Equal mean intercept (M3) M3 vs M1 586.751 23 39.593 3 0.000

Equal rate of change (M4) M4 vs M1 693.723 23 146.565 3 0.000

Equal random variance (M5) M5 vs M1 569.571 23 22.413 3 0.000
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significant �x2 indicates that the four classes differ in 
at least one of the growth parameters examined. Model 
2 is a latent basis model in which the loading factors of 
�1 = 0, �5 = 14 constraints were applied to all groups. 
The rest loading factors, �2,�3 and �4 , are unconstrained 
across all groups to permit different functional forms of 
trajectories for each group. A chi-square difference test 
of 458.699 with p = 0.000 in Table 2 indicates that at least 
one group has distinct growth patterns. Model 3 and 4 
examined group-varying in mean intercept and rate of 
change, respectively. The small value of p = 0.000 suggests 
that at least one group has a different mean intercept and 
rate of change than other groups. The parameter esti-
mates of these models are presented in Table 3.

A comparison of the growth parameters across the 
four groups shows variations in growth patterns in 
height. Ethiopia captured the initial mean height of 71.38, 
p < 0.0001 with the rate of change 6.11, p < 0.0001. India 
captured the initial mean height of 72.15, p < 0.0001 
with the rate of change 5.98, p < 0.0001. Peru captured 
the initial mean height of 71.77, p < 0.0001 with the rate 
of change of 6.13, p < 0.0001. Vietnam captured the ini-
tial mean height of 72.40, p < 0.0001 with the rate of 
change of 6.19, p < 0.0001. The variance–covariance 
structure varies depending on the detected group tra-
jectories. In all groups, the intercept and slope vari-
ance were significant. The significant and positive 

covariance between mean intercept and slope for both 
Peru and Vietnam groups indicate that children who 
had a higher initial height tended to be growing at 
a faster rate. However, the covariance was not sig-
nificant in the Ethiopian and Indian groups (Ethiopia: 
ψαβ = 0.061, p = 0.446, India : ψαβ = 0.116, p = 0.083).

Latent basis growth mixture model with unobserved 
groups
Individual categorization of trends based on prior infor-
mation may result in developmental profiles being over-
or under-fitted [28]. Instead, in the absence of a priori 
group classification, the growth mixture model provides 
an analytical opportunity to identify between different 
developmental shapes [2]. A growth mixture model can 
extend a multiple-group approach by introducing latent 
classes and a probabilistic categorization for each indi-
vidual [28].

Figure  4 shows the plot of individual height measure-
ments of the children against time for five waves of data. 
The visual information displayed in Fig.  4 shows that 
there is some indication of differences in height growth 
between and within the children. It also shows nonlin-
ear growth changes in a child’s height over time. The 
between-individual variability in height growth was small 
in early childhood and increases with a child’s age. Fig-
ure 4 also suggests that with a few exceptions, individuals 

Table 3 Parameter estimates of multiple-group analysis of longitudinal height data for Ethiopia, India, Peru and Vietnam

*** p < 0.0001

Group Parameter Estimate SE CR p-value

Ethiopia Intercept ( α) 71.376 0.136 524.896 ***

Rate of change ( β) 6.105 0.013 465.808 ***

Random intercept variance ( ψαα) 12.569 0.938 13.397 ***

Random slope variance ( ψββ) 0.112 0.01 10.944 ***

Covariance ( ψαβ) 0.061 0.08 0.762 0.446

India Intercept ( α) 72.15 0.122 590.749 ***

Rate of change ( β) 5.984 0.013 463.608 ***

Random intercept variance ( ψαα) 12.663 0.748 16.936 ***

Random slope variance ( ψββ) 0.087 0.009 9.349 ***

Covariance ( ψαβ) 0.116 0.067 1.732 0.083

Peru Intercept ( α) 71.768 0.12 597.644 ***

Rate of change ( β) 6.129 0.012 528.918 ***

Random intercept variance ( ψαα) 12.945 0.799 16.194 ***

Random slope variance ( ψββ) 0.051 0.008 6.386 ***

Covariance ( ψαβ) 0.463 0.063 7.418 ***

Vietnam Intercept ( α) 72.399 0.108 669.674 ***

Rate of change ( β) 6.192 0.011 542.145 ***

Random intercept variance ( ψαα) 13.341 0.624 21.386 ***

Random slope variance ( ψββ) 0.077 0.007 10.554 ***

Covariance ( ψαβ) 0.51 0.052 9.78 ***
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with a lower initial height at age one also exhibited a 
lower height throughout the measurement occasions and 
other individuals who started with relatively high initial 
mean height also grew taller over time. This suggests that 
there could be latent or unobserved subgroups of indi-
viduals who show heterogeneous trajectories. For such 
instances, a growth mixture model is a reasonable model 
to investigate individuals’ growth heterogeneity by cat-
egorizing them into latent categories with more homo-
geneous trajectories. We analyzed height data collected 
from children in four low- and middle-income countries. 
Height measurements were taken on five occasions. For 
specification purposes, the first and the last measure-
ment occasions were pre-specified to �1 = 0 and �5 = 14 
factor loadings to accommodate nonlinearity trajectories.

The number of latent groups in a growth mixture 
model is a major research subject. This is accomplished 
by fitting models with varying numbers of groups in a 
sequential manner and comparing the fitted models. 
Three growth mixture models were fitted along with the 
time-independent covariates to estimate the number of 
potential latent groups in the height data: a one-group 
model  (H0: g = 1), a two-group model  (H0: g = 2) and a 
three-group model  (H0: g = 3). Information criteria–
based indices were used to compare these models. Since 

models with distinct numbers of groups are not nested, 
a likelihood ratio test is not useable for model compari-
sons. Instead, Muthen and Muthen (2000) suggest using 
Bayesian Information Criteria (BIC) to choose the best 
number of latent groups and a model with a lower value 
is better-fitting [3, 21]. Table 4 shows the results of model 
fit indices for three different group growth mixture mod-
els. The one-group growth mixture model is the conven-
tional latent growth curve model. The results suggest 
that the two-group model fits the data much better than 
the one-group and three-group models as it had a lower 
BIC value. The two-class model, which is the best-fitting 
model, divides the data into two groups (Fig. 5). Table 4 
shows that the first and the second groups of the growth 

Fig. 4 Individuals growth trajectories across five measurement occasions

Table 4 The fit of an optimal number of groups for growth 
mixture models

BIC Bayesian Information Criteria

Group 
number

Log-likelihood BIC Group size (%)

1  − 106,954.4 213,961.7 6601 (100)

2  − 106,920.9 213,929.8 4260 (35.5), 2341 (64.5)

3  − 106,906.1 213,935.3 18.48, 41.65, 39.87
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mixture model comprised 4260 (64.5%) and 2341 (35.5%) 
of the population, respectively. Females were estimated 
to comprise 30.3% and 81.6% of groups 1 and 2, respec-
tively, and males were estimated to comprise 69.7%, and 
18.4% of groups 1 and 2, respectively.

The evaluation of group membership predictors and 
their variations in growth parameters within each group is 
another important aspect of the growth mixture model. A 
latent basis growth curve model was employed as a base-
line model to capture variations in height over five meas-
urement occasions. The results of parameter estimates of 
the latent basis growth mixture model with two groups 
are shown in Table 5. The results indicate that each of the 
two groups exhibited distinct patterns. It can be seen that 
a latent basis form fits well both latent groups. Group 
1 showed a significant 

(

αµ = 72.63, p < 0.0001
)

 initial 
height measurement at age one and a significant rate of 
change over time 

(

βµ = 6.27, p < 0.0001
)

 . Group 2 also 
showed a significant 

(

αµ = 72.75, p < 0.0001
)

 initial 
height measurement at age one and a significant rate of 
change over time 

(

βµ = 5.92, p < 0.0001
)

 . The significant 
intercept variance (Group 1: ψαα = 11.93, p < 0.0001 
and Group 2: ψαα = 14.23, p < 0.0001 ) and slope vari-
ance (Group 1: ψββ = 0.14, p < 0.0001 and Group 2: 
ψββ = 0.13, p < 0.0001 ) indicate that there were con-
siderable inter-individual variations in the initial level 

of height measurement and rate of changes across 
individuals, respectively. For group 1, the parameter 
values of slope factor loadings were estimated to be 
�1 = 0

(

fixed
)

, �2 = 5.19, �3 = 7.72, �4 = 11.03, �5 = 14
(

fixed
)

 
and for group 2 �1 = 0

(

fixed
)

, �2 = 5.77, �3 = 8.54,

�4 = 12.76, �5 = 14(fixed . The significantly differ-
ent values of slope factor loadings for groups 1 and 2 
indicate that latent group 1 and group 2 have differ-
ent functional forms of trajectories. For group 1, the 
non-significant covariance between the mean inter-
cept and rate of growth ( ψαβ = −0.045, p = 0.205 ) 
revealed that there was no association between the two 
growth components, while it was significant in group 2 
( ψαβ = −0.184, p < 0.0001 ), indicating that children 
with higher initial levels of mean height at age one pro-
gressed less rapidly in their growth over time than those 
with lower initial levels of mean height.

The next work is to investigate and evaluate the likely 
differences in the covariate influences on these two group 
trajectories. This is accomplished by introducing group-
specific time-invariant covariates, creating a conditional 
growth mixture model, to capture the difference in the 
group-specific growth factors. This conditional model 
entails defining analysis of continuous latent growth fac-
tors and groups of categorical latent variables on gender 
and residing country of children. The fitted results of the 

Fig. 5 Two-group individual growth trajectories over five time points
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conditional growth mixture model are given in Table  5. 
Gender and country differences were found to be associ-
ated with the growth factors, but the relationship differed 
with the trajectory group. For instance, females tended 
to have lower growth factors compared with their male 
counterparts in both groups.

Compared with children from Ethiopia, children 
from Peru and Vietnam tended to exhibit faster growth 
in height over time: Group 1: ( βPeru = 0.04, p = 0.035,

βViet = 0.09, p < 0.0001 ) and Group 2: ( βPeru = 0.07,

p = 0.01,βViet = 0.17, p < 0.0001 ). In contrast, children  
from India showed a lower rate of change in both 
latent groups than that of children from Ethiopia: 
Group 1: ( βIndia = −0.15, p < 0.0001 ) and Group 2: 
( βIndia = −0.12, p = 0.01, p < 0.0001 ). Furthermore, the 
findings showed that the effects of selected covariates on 
initial levels of mean height varied throughout latent tra-
jectory groups.

Discussion
Many analyses of longitudinal data assume that there is 
a single population on a single trend. Data from a sin-
gle population assumed that individuals contribute 

comparable information about a hypothesized growth 
process. However, individuals may not have similar 
growth trajectories over time and they can be classified 
into various groups based on their growth trajectories. 
Because of the intrinsic heterogeneity found in trajecto-
ries of some individual characteristics, the assumption 
of a single population is not reasonable. In the current 
study, two mixture modeling approaches were applied 
to investigate growth heterogeneity in the height of chil-
dren in four low- and middle-income countries. First, 
it is when the individual’s group membership is known 
and second when the individual’s group membership is 
unknown, and there are multiple groups with different 
growth trajectories. The latter technique permits for the 
evaluation of height change over time while explicitly 
permitting the latent growth structure to be parameter-
ized with a specific number of groups.

The findings of the study identified that there was a 
substantial difference in growth parameters across the 
four observed groups. The differences in growth trajec-
tories were observed among children. Subsequently, 
we defined an unobserved growth mixture model as an 
extension of a multiple-group growth model that is useful 

Table 5 Parameter estimates of 2-group latent basis growth mixture model

*** p < 0.0001

Group 1 Group 2

Estimate SE CR p Estimate SE CR p

Latent variable means

 Intercept mean 
(

αµ
)

72.632 0.143 508.509 *** 72.745 0.266 273.412 ***

 Slope 
(

βµ
)

6.274 0.015 412.753 *** 5.919 0.025 234.251 ***

Time-invariant covariate

 Intercept < –- Gender (Female)  − 2.12 0.144  − 14.71 ***  − 1.661 0.248  − 6.695 ***

 Slope < –- Gender (Female)  − 0.178 0.015  − 11.481 ***  − 0.071 0.024  − 3.023 0.003

Country < –- Ethiopia (Reference group)

 Intercept < –- India 0.01 0.181 0.057 0.954 1.286 0.295 4.359 ***

 Intercept < –- Peru  − 0.61 0.189  − 3.237 0.001 0.723 0.284 2.547 0.011

 Intercept < –- Vietnam  − 0.216 0.184  − 1.171 0.241 1.128 0.278 4.059 ***

 Slope < –- India  − 0.146 0.019  − 7.537 ***  − 0.117 0.028  − 4.168 ***

 Slope < –- Peru 0.043 0.02 2.109 0.035 0.07 0.027 2.582 0.01

 Slope < –- Vietnam 0.092 0.02 4.631 *** 0.171 0.026 6.494 ***

Latent variance–covariance

 Intercept variance 11.934 0.435 27.427 *** 14.232 0.699 20.368 ***

 Slope variance 0.136 0.005 27.699 *** 0.127 0.006 21.32 ***

 Intercept < –- Slope  − 0.045 0.036  − 1.267 0.205  − 0.184 0.052  − 3.541 ***

Slope factor loadings

 Time 1 0 (fixed) 0 (fixed)

 Time 2 5.189 0.009 590.018 *** 5.765 0.013 440.033 ***

 Time 3 7.718 0.009 895.078 *** 8.543 0.013 633.347 ***

 Time 4 11.032 0.009 1217.075 *** 12.759 0.012 1032.696 ***

 Time 5 14 (fixed) 14 (fixed)
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for analyzing the growth variations in multiple latent or 
unobserved subgroups. We performed Growth mixture 
models with one, two and three groups applying a latent 
basis growth curve model for all groups to estimate the 
number of potential latent groups. The BIC scores for 
these group models were evaluated, and the two-group 
latent basis mixture model was preferred for the current 
height data. In this model, individuals were categorized 
into two groups, with Group 1 accounting for 64.5 per-
cent of the total and Group 2 accounting for 35.5 percent. 
Group 1 had the most male samples (69.7%), and Group 
2 had the most female samples (81.6%). Two group tra-
jectories were identified in the previous longitudinal 
study that employed growth mixture modeling to esti-
mate weight-to-height trajectories in children aged 4 to 
12  years [29]. The previous study has investigated sex-
specific latent height class trajectories and identified the 
three-class model for males (low, intermediate and high) 
and the two-class model for females (low and high) (low 
and high). The study reported that in both sexes, height 
was significantly distinct between classes [30].

The results of the study demonstrated that the growth 
trajectories of children in four low- and middle-income 
countries were categorized into two different group tra-
jectories. Gender and country differences were found to 
be associated with the growth factors, but the relation-
ship differed with the trajectory group. Females had 
lower growth factors in both latent groups compared 
with males. In both trajectory groups, compared with 
children from Ethiopia, those from Peru and Vietnam 
grew taller more quickly over time. Children from India, 
on the other hand, showed a lower rate of change in both 
latent groups than children from Ethiopia.

When studying growth trajectories within a popula-
tion, the growth mixture model provides a lot of potential 
for identifying group heterogeneity. Growth trajectories 
were found to be heterogeneous and the study identified 
two different group trajectories. The mean, variance and 
weight structures of the two groups were all different.

The limitation of the study is that it focused only on 
four low and middle-income countries with few covari-
ates. As a result, further study is needed to address these 
limitations.

Conclusion
The study identified that the height of children in four 
low- and middle-income countries showed heteroge-
neous changes over time with two different groups of 
growth trajectories. Group 1 had the most male samples, 
and Group 2 had the most female samples. This study 
may also provide valuable insights for a better under-
standing of how to model growth heterogeneity in the 
context of mixture models.
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