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Abstract 

In light of the global prevalence of a highly contagious respiratory disease, this study presents a novel approach 
to address the pressing and unanticipated issues by introducing a modified vaccination and lockdown-centered epi-
demic model. The rapid spread of the disease is attributed to viral transmissibility, the emergence of new strains (vari-
ants), lack of immunization, and human unawareness. This study aims to provide policymakers with crucial insights 
for making informed decisions regarding lockdown strategies, vaccine availability, and other control measures. The 
research adopts three types of models: deterministic, heterogeneous, and fractional-order dynamics, on both theoret-
ical and numerical approaches. The heterogeneous network considers varying connectivity and interaction patterns 
among individuals, while the ABC fractional-order derivatives analyze the impact of integer-order control in differ-
ent semi-groups. An extensive theoretical analysis is conducted to validate the proposed model. A comprehensive 
numerical investigation encompasses deterministic, stochastic, and ABC fractional-order derivatives, considering 
the combined effects of an effective vaccination program and non-pharmaceutical interventions, such as lockdowns 
and shutdowns. The findings of this research are expected to be valuable for policymakers in different countries, help-
ing them implement dynamic strategies to control and eradicate the epidemic effectively.
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Introduction
In the sense of controlling lethal disease, due to rapid 
spreading characteristics and lack of proper treatment, 
the lockdown/shutdown policy became a common 
worldwide strategy to control its viral transmissibility. On 
top of that, vaccine shortages are fundamental reasons to 

impose the lockdown policy. Instead of economic loss, 
the lockdowns with varying levels assist policymakers in 
minimizing people’s lives if the lockdown maintenance 
factor works as expected. In addition, if there exists a 
considerable vaccine shortage worldwide, except for a 
few rich countries, these countries’ policymakers are 
frightened to minimize vaccine shortage for their people. 
Also, the vaccine efficacy rate significantly impacts talk-
ing about vaccination. As a result, the disease spreads 
worldwide within a very short period and harms human-
kind. To attain more realistic epidemic dynamics where 
vaccine shortage and lockdown policy aspects might hap-
pen, we considered a modified epidemic SEIR (suscepti-
ble-exposed-infected recovered) model [1–3].
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The origins of mathematical modeling of infectious dis-
eases may be traced back to the early 1900s [4]. With a 
mounting threat of population diseases in humanity, dis-
ease modeling exhibition has become a significant part 
of epidemic control [1, 5–7]. The mathematical model 
will help us compute potential facilitation impacts, how 
infectious diseases evolve, and forecast an epidemic or 
pandemic. In this respect, numerous lockdown, quaran-
tine, awareness, and vaccination models have developed 
with time to elucidate disease dynamics. To reflect the 
behavioral dynamics of economic shutdowns and shield 
immunity during the pandemic time, Kabir and Tani-
moto [8] propose an evolutionary game theory modeling 
technique. During an epidemic, Kabir et  al. [9] briefly 
highlighted people’s employment of masks and similar 
protective practices that benefit the wearer and others. 
Alam et al. [10], Higazy et al. [11], Ullah et al. [12], and 
Higazy and Alyami [13] provided a comparative study 
of quarantine and isolation policy, transmission model 
in the context of the ABO blood group, all possible sce-
narios of a pandemic except the vaccination proportion, 
genetic algorithm-based control strategy model of epi-
demic transmission. However, the mentioned works did 
not consider the combined impact of lockdown and vac-
cine shortage, although they could present some exciting 
results.  Considering the lack mentioned above works, 
we offer the combined effects of lockdown and vaccine 
shortage using a mathematical epidemiological model to 
guide this research work.

One of the most universally used methods for control-
ling the disease is the vaccination program to control and 
eradicate the contagious disease. It can provide an effec-
tive means to prevent communicable diseases and is crit-
ical for executing public health policies. On top of that, 
it deliberates direct protection to individuals, reduces the 
spread of infection, and provides herd protection to the 
population [14]. Most vaccination programs are optional, 
and individuals may choose whether or not to be vacci-
nated [15, 16]. However, many vaccine programs [17–19] 
have been found about mass vaccination strategies and 
forced vaccine programs. Besides, traditional and long-
term immunization techniques are also crucial; see [17, 
18]. Moreover, vaccine shortage is among the most criti-
cal issues for controlling infectious diseases and impacts 
people’s vaccination decisions. A shortage is unlikely to 
occur if a sufficient supply of vaccinations shows a unique 
equilibrium.

Furthermore, if the supply of vaccines is unavailable 
against the demand, a deficiency could occur in balance 
despite scarcity being self-fulfilling. When this circum-
stance develops, many put off being vaccinated. Fur-
thermore, it heightens public fear and anxiety amid an 
epidemic, influencing people’s vaccination decisions. In 

such a situation, the interest in the minds of those who 
have decided to take the vaccine will increase as many 
people have decided to take it. Chen [19] theoretically 
analyzes voluntary vaccinations and vaccine shortages. Li 
et al. [20], Kahwati et al. [21], Fairbrother et al. [22], and 
Allison et al. [23] briefly discussed the impact of vaccine 
shortage on different epidemic diseases.

Typically, conventional compartmental models [2, 
8–10] examine infectious disease transmission dynam-
ics in compact, homogeneous populations. The primary 
issue lies in the equitable exposure of all individuals to 
an infected individual. Consequently, a growing body of 
academic research has focused on using complex net-
works in epidemic modeling for several decades. There 
is a consensus among scholars that considering contact 
heterogeneity’s impact becomes relevant when dealing 
with sufficiently large populations. Consequently, incor-
porating a complex network is employed in the epidemic 
models to represent the impact of contact dynamics accu-
rately. In a complex network, each individual is repre-
sented as a network node, while the association between 
two individuals is represented as a connection between 
two nodes. There is a growing emphasis on the need for 
increased scholarly investigation into the dynamics of the 
propagation model within both homogeneous and heter-
ogeneous networks, specifically about incorporating net-
work topology [24–27]. Pastor-Satorras and Vespignani 
[28, 29] proposed a widely recognized epidemic model 
for complex networks, in which they presented empiri-
cal evidence for the absence of an epidemic threshold due 
to a diverse contact pattern. This study marked the first 
instance of such a finding. They achieved this by employ-
ing entirely separate epidemic propagation scenarios. 
However, as mentioned earlier, the research studies are 
dealt with in the SI [30] or SIR [27–29, 31, 32] network 
epidemic model, and there is currently a lack of research 
specifically focused on the impact of lockdown meas-
ures. In this study, we will examine and analyze the SEIR-
based vaccination model, which is widely recognized, 
along with a lockdown component. This analysis will be 
conducted for the first time on two distinct complex net-
works: the Erdős–Rényi random network (referred to as 
ER-random) [33] and the Barabasi–Albert scale-free (SF) 
network (referred to as BA) [34].

Many mathematicians and researchers from vari-
ous fields have recently focused on the theory of frac-
tional calculus and fractional differential equations 
to describe the different real-world phenomena and 
dynamical behavior of the epidemic diseases model 
[11–13, 35–41]. Because the derivative is obtained 
from evaluating integral over the region, fractional-
order precision overrides integer order due to its non-
local nature and changes every moment. In contrast, 
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the value of an integer-order derivative assessed at a 
point depends exclusively on that point. On top of that, 
it is said that fractional derivatives are advantageous 
for demonstrating numerous everyday issues because 
of memory and universal features [11–13, 35, 42–44]. 
Therefore, the significance and potential application 
rose daily as fractional-order differential equations 
added additional dimensions to the study of epidemi-
ological models, and numerous research [45–49] have 
addressed the fractional-order differential model. This 
study uses the ABC fractional-order derivative method 
[48]. According to the above discussion, it is clear that 
there is still no extensive study that combined both 
lockdown and vaccination strategies on the framework 
of fractional-order derivative and various heteroge-
neous network perspectives. Thus, we are the first to 
amalgamate lockdown and vaccination strategies as a 
non- pharmaceutical and pharmaceutical provision on 
two frameworks: fractional-order derivative and het-
erogeneous network.

This study presents a comprehensive framework for 
elucidating the joint effects of lockdown measures and 
vaccination programs, with vaccine efficacy being influ-
enced by their availability both conventionally and frac-
tionally. Furthermore, we investigate a heterogeneous 
network to accurately depict how these combined meas-
ures influence individuals’ behavior during an epidemic 
in a society. The results of the fractional-order simulation 
reveal that a lower value of the fractional order leads to 
a delayed peak in the epidemic, and the average degree 
distribution illustrates the variation in infection and con-
trol strategies. The proposed model sheds light on how 
the final size of the epidemic is impacted by the reduced 
efficacy of vaccines and their shortage. Interestingly, it is 
observed that prolonged lockdown measures may lead 
individuals to feel more compelled to leave their homes, 
consequently accelerating the spread of the disease. In 
light of these findings, it becomes evident that the most 
dynamic and effective strategies for controlling the epi-
demic involve a combination of an efficient vaccination 
program and non-pharmaceutical interventions, such 
as lockdowns, shutdowns, and states of emergency. This 
holistic approach holds promise in curbing the spread of 
the disease and mitigating its impact on society.

Model formulation
The current model is based on the standard SEIR model. 
The whole population is partitioned into nine subgroups: 
Susceptible S(t) , Lock-down L(t) , Exposed E(t) , Infected 
I(t) , Recovered R(t) , Vaccinated V (t) , Vaccinated 
exposed EV (t) , Vaccinated infected IV (t) and Vaccinated 
Recovered RV (t).

Therefore, the proposed vaccination model is repre-
sented by the subsequent system of nonlinear ordinary 
differential equations:

The total population,

Let us assume that if x is the state variable vector, then 
we can write,
x = (S(t), L(t),E(t), I(t),R(t),V (t),EV (t), IV (t),RV (t))

′ and 
f : R

9
→ R

9.

The suggested model’s right side (Eq. 1) is thus a con-
tinuously differentiable function on R9 . A unique elu-
cidation of Eq.  (1) occurs at every initial condition and 
continues for the maximum existence interval [49]. As 
a result, the suggested model has a clear biological sig-
nificance. The model’s solution is also positive ∀t ≥ 0 and 
bounded by the entire population N (t) according to [2, 
11] (Eq. 1–2). Therefore, each compartment is regarded 
as one of the nine potential states at any time.

Vaccine shortage
If Vo is the amount of available vaccine, then

 (i) Susceptible individuals, S(t) In the beginning, 
the susceptible part of the overall population is 
exposed to the infected individuals (first equation 
of 1). Those who lose immunity due to an ear-
lier infection add to the vulnerable group and are 
reduced through vaccination (moving to class V 

(1)

dS

dt
= −βS(t)(I(t)+ IV (t))− δ S(t)− lS(t)+ ldL(t),

dL

dt
= lS(t)− (1− q)βL(t)(I(t)+ IV (t))− ldL(t),

dE

dt
= βS(t)(I(t)+ IV (t))+ (1− q)βL(t)(I(t)+ IV (t)) − αE(t),

dI

dt
= αE(t)− γ I(t),

dR

dt
= γ I(t),

dV

dt
= δ S(t)− (1− η)βV (t)(I(t)+ IV (t)),

dEV

dt
= (1− η)βV (t)(I(t)+ IV (t))− αEV (t),

dIV

dt
= αEV (t)− γ IV (t),

dRV

dt
= γ IV (t).

(2)
N (t) =S(t)+ L(t)+ E(t)+ I(t)

+ R(t)+ V (t)+ EV (t)

+ IV (t)+ RV (t).

(2.1)δ =
0 if V (t) > Vo,
δ otherwise.
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with an efficacy rate (1− η) at the rate,δ ), following 
the lockdown level l, infection (moving to class E).

 (ii) Lockdown individuals, L(t) Lockdown state mem-
bers are the individuals who have adhered to the 
lockdown-related guidelines. It refers to susceptible 
people who stay at home and are not infected by 
the virus. The lockdown maintenance or obedient 
factor (1− q) has a crucial role in the prevention 
of infection. Here, q = 0 indicates that no people 
maintain lockdown rules, and q = 1 , the lockdown 
policy works appropriately. Using the Heaviside 
function, we assess the lockdown open and shut 
mechanism.

where, dstart = lockdown starting time, and dend = lock-
down ending time.

 (iii) Exposed individuals,E(t) Infected people who are 
still vulnerable after being vaccinated increase the 
number of the exposed and not vaccinated yet; 
also, the lockdown maintenance or obedience fac-
tor. The onset of infection reduces the exposed 
population (moving to class I(t) ) at the rate α . 
During the exposed phase, humans maintain a 
low infectivity level. This compartment technically 
reflects the slightly infectious stage.

 (iv) Infected individuals, I(t) A fraction of exposed peo-
ple evolve an infected class at the rate α increases 
the population of an infective class. Recovery from 

(2.2)l[dstart, dend] =

{

0, t /∈ [dstart, dend],
1, t ∈ [dstart, dend].

the disease at the rate γ reduces the number of 
infective persons.

 (v) Recovered individuals,R(t) The recovered popula-
tion increased from infective class at the rate γ.

 (vi) Vaccinated individuals, V (t) The number of people 
who have been vaccinated has grown as more peo-
ple have been immunized. The vaccinated people 
were reduced by a factor ( 1− η)β with 0 ≤ η ≤ 1.

 (vii) Vaccinated exposed individuals,Ev(t) The vacci-
nated exposed population increases if the mass sus-
ceptible individuals take part under the vaccinated 
program and are reduced by the onset of infection 
(moving to class IV (t) ) at the rate α.

 (viii) Vaccinated infected individuals,IV (t) : The popu-
lation of vaccinated infective class increased by a 
fraction of vaccinated exposed individuals becom-
ing infective class at the rate α . The vaccinated 
infected individuals are reduced by recovery from 
the disease at the rate γ.

 (ix) Vaccinated recovered individuals,RV (t) The recov-
ered population increased from the vaccinated 
infective class at the rate γ.

Table  1 explains the biological significance of the 
parameters and the values preferred for them.

Network‑based epidemic model
We suggest a network-based SLEIRVEV IV RV  epidemic 
model in this section for the first time. This section 
describes the SEIR model with the vaccine compart-
ment. The model presented in this research work is a 

Table 1 List of parameters, variables, and their biological meanings

Notation Meaning Value Reference

β Transmission rate 1.0 [15]

δ Vaccination rate 0.0–1.0 (Varied)

l Lockdown level 0.0–0.9 (Varied)

ld Lockdown day – (Varied)

q(0 ≤ q ≤ 1) Lockdown maintenance factor 0.0–1.0 Estimated

α Infection rate 1/5 [15]

γ Recovery rate 0.1 Estimated

1− η(0 ≤ η ≤ 1) Vaccine efficacy 0.0–1.0 (Varied)

S(t) Number of susceptible individuals 0.9998 Estimated

L(t) Lockdown state 0.0 Estimated

E(t) Number of exposed individuals 0.0 Estimated

I(t) Number of infected individuals 0.0001 Estimated

R(t) Number of recovered individuals 0.0 Estimated

V(t) Number of vaccinated individuals 0.0 Estimated

EV (t) Number of vaccinated exposed individuals 0.0 Estimated

IV (t) Number of vaccinated infected individuals 0.0001 Estimated

RV (t) Number of vaccinated recovered individuals 0.0 Estimated



Page 5 of 32Ullah et al. Journal of Health, Population and Nutrition           (2024) 43:32  

mean-field numerical approach since the complex net-
work is dynamic, and the linkages are constantly rewired 
throughout the dynamics of an epidemic. The network 
under analysis is designated N  . It is believed that each 
site in N  is either unoccupied or employed by a sin-
gle person and that each site in N  may choose just one 
state from the S, L,E, I ,R,V ,EV , IV  and RV  . Addition-
ally, n groups are created for each state based on the 
degree of the site. Sk , Lk ,Ek , Ik ,Rk ,Vk ,E

V
k , IVk  and RV

k  , 
for k = 1, 2, 3, . . . , n , the number n represents the density 
of those with degree k who are susceptible, in lockdown 
state, exposed, infected, vaccinated, vaccinated exposed, 
vaccinated infected, and vaccinated recovered. The pace 
at which each site’s status may change varies. Therefore, 
the mean-field equations are expressed as follows:

If a link links to a site of degree k , the probability that it 
does so is proportional to degree distribution (k − 1)P(k) 
[28, 29] for uncorrelated complex degree networks, then 
�(t) is represented as

where P(k) > 0, the degree distribution of the network, 
which satisfies the normalized equality 
n
∑

k=1

(k − 1)P(k) = 1, and 
〈

k
〉

=

n
∑

k=1

(k − 1)P(k) symbol-

izes the average degree of the network.
The proposed lockdown-vaccination model (3) with 

Eq.  (9) and the initial condition Sk(0) = S
0
k
, Lk(0) =

L
0
k
,Ek (0) = E

0
k
, Ik (0) = I

0
k
,Rk (0) = R

0
k
,Vk (0) = V

0
k
,VEk (0) =

E
0
Vk
, IVk(0) = I

0
Vk
,RVk(0) = R

0
Vk

 must be satisfied inequal-
ity 0 < S

0
k
+ L

0
k
+ E

0
k
+ I

0
k
+ R

0
k
+ V

0
k
+ E

0
Vk

+ I
0
Vk

+ R
0
Vk

≤ 1, 

(3)

dSk(t)

dt
= −βkSk(t)θ(t)− δSk(t)− lSk(t)+ ldLk(t),

dLk(t)

dt
= lSk(t)− (1− q)βkLk(t)θ(t)− ldLk(t),

dEk(t)

dt
= βkSk(t)θ(t)+ (1− q)βkLk(t)θ(t)− αEk(t),

dIk(t)

dt
= αEk(t)− γ Ik(t),

dRk(t)

dt
= γ Ik(t),

dV (t)

dt
= δSk(t)− (1− η)βkVk(t)θ(t),

dEV
k (t)

dt
= (1− η)βkVk(t)θ(t)− αEV

k (t),

dIVk (t)

dt
= αEV

k (t)− γ IVk (t),

dRV
k (t)

dt
= γ IVk (t).

(4)�(t) =

∑

k (k − 1)P(k)
(

Ik(t)+ IVk (t)
)

k
,

which describes the dynamics of the vaccinated model on 
uncorrelated networks with degree distribution 
(k − 1)P(k) . Any system (3) solution starting from the 
nonnegative cone R9n

+
 is shown to stay nonnegative. 

Therefore, we examine the R9n
+

 model (3) in the following 
sections. Additionally, combining the four equations in 
the model (3) results in

where Nk = total population.

Therefore,

As a result, the feasible compact region

contains a positive invariant concerning the model (3) 
that is included in the nonnegative cone of R9n

+
 with 

1 ≤ k ≤ n.

Epidemic model based on ABC fractional derivative
In recent decades, mathematical models of integer deriv-
atives have progressed considerably due to the lack of 
information or the precision with which reality is trans-
lated into a mathematical formula. Such models cannot 
always wholly imitate real-world phenomena. As a result, 
its utilization is vital to humankind’s prophecy, which 
helps people comprehend what could ensue shortly to 
take preventative actions to avert worst-case scenarios. 
Compared to standard integer-order models, fractional-
order (FO) models give a more precise and compre-
hensive insight into the complicated behavior of many 
diseases. FO systems are preferable to integer-order 
systems owing to their inherited features and memory 
description [11–13, 43, 44]. In addition, standard integer-
order systems cannot investigate the dynamics between 
two points. Many ideas and conceptions about FO deriv-
atives have been offered in the literature. The classical 
FO derivative is shown in [50] as an example. The FO, 
as mentioned earlier, derivatives [43, 44, 50] were effec-
tively employed to represent real-world processes in vari-
ous domains, including biology, engineering, and physics 
[12, 53]. Due to the non-singular kernel of the classical 
FO derivative, the non-local dynamics and crossover 

(5)

d

dt

(

Sk + Lk + Ek + Ik + Rk + Vk + EV
k + IVk + RV

k

)

= Nk,

lim
t→∞

sup[Sk(t)+ Lk(t)+ Ek(t)+ Ik(t)

+Rk(t)+ Vk(t)+ E
V

k
(t)+ I

V

k
(t)+ R

V

k
(t)

]

≤ Nk.

(6)

� =

{

S1, L1,E1, I1,R1,V1,E
V

1 , I
V

1 ,R
V

1 ,

. . . , Sk , Lk ,Ek , Ik ,Rk ,Vk ,E
V

k
, I

V

k
,R

V

k

}

∈ R
9n
+

: Sk(t)+ Lk(t)+ Ek(t)+ Ik(t)

+ Rk(t)+ Vk(t)+ E
V

k
(t)+ I

V

k
(t)+ R

k

k
(t) ≤ Nk ,
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behavior of many real-world events cannot be adequately 
explained. In 2016, Atangana and Baleanu [48] presented 
a new FO derivative based on a generalized Mittag–Lef-
fler function as a non-local and non-singular kernel to 
address some issues about the non-locality of the kernel 
of the derivative proposed in [51] and better to investi-
gate the non-local complex behavior of various systems. 
The recently developed Atangana–Baleanu derivative 
[48] has been used to mimic a variety of real-world issues 
in diverse fields [52–55].

Initially, a few definitions relating to the classical 
Caputo [51] and Atangana–Baleanu fractional derivatives 
[48] are presented briefly (Fig. 1).

Definition 1 Under the condition of F(t) ∈ H1(0,T ), 
the general definition of ABC derivative of a function 
F(t) is as follows:

(7.1)

ABC
0 Dα

t F(t) =
ABC(α)

1− α

t
∫

0

d

dv
F(t)εα

[

−α

1− α
(t − v)α

]

dv.

In Eq.  (7.1), substituting εα

[

−α
1−α

(t − v)α
]

 by 
ε1 = exp

[

−α
1−α

(t − v)
]

 for the Capto–Fabrizo differential 
operator. On top of that, it is to be mentionable that 
ABC
0 Dα

t [constant] = 0.

The normalization function is denoted by the 
symbol ABC(α) , and its definition is as follows: 
ABC(0) = ABC(1) = 1. Additionally, εα represents a 
unique function that is referred to as the Mittag–Leffler 
function.

Definition 2 If we assume that F(t) is a function of the 
interval L[0,T ] , then the integral that corresponds to it in 
the ABC sense is provided by:

Lemma 1 According to proposition 3, described in [56], 
the desired solution of the assumed problem for the frac-
tional order  0 < α ≤ 1 is.

Considering that the right side disappears at time t = 0 , 
then

ABC fractional‑order model
The system of the nonlinear ABC fractional-order dif-
ferential equation (FODE) is thus as follows:

(7.2)

ABC
0 I

α
t F(t) =

1− α

ABC(α)
F(t)+

α

ABC(α)Ŵ(α)

t
∫

0
(t − v)α−1F(v)dv.

ABC
0 D

α
t F(t) = y(t), t ∈ [0,T ],

F(0) = F0.

(7.3)

F(t) = F0 +
1− α

ABC(α)
y(t)+

α

Ŵ(α)ABC(α)

t
∫

0
(t − v)α−1y(v)dv.

(8)

ABC
0 Dǫ

t S(t) = −βS(t)(I(t)+ IV (t))− δ S(t)− lS(t)+ ldL(t),

ABC
0 Dǫ

t L(t) = lS(t)− (1− q)βL(t)(I(t)+ IV (t))− ldL(t),

ABC
0 Dǫ

t E(t) = βS(t)(I(t)+ IV (t))+ (1− q)βL(t)(I(t)+ IV (t)) − αE(t),

ABC
0 Dǫ

t I(t) = αE(t)− γ I(t),

ABC
0 Dǫ

t R(t) = γ I(t),

ABC
0 Dǫ

t V (t) = δ S(t)− (1− η)βV (t)(I(t)+ IV (t)),

ABC
0 Dǫ

t EV (t) = (1− η)βV (t)(I(t)+ IV (t))− αEV (t),

ABC
0 Dǫ

t IV (t) = αEV (t)− γ IV (t),

ABC
0 Dǫ

t RV (t) = γ IV (t).

Fig. 1 Schematic diagram of the model in which the population 
is divided into nine states: Susceptible S(t) , Lockdown L(t) , Exposed 
E(t) , Infected I(t) , Recovered R(t) , Vaccinated V(t) , Vaccinated 
exposed EV (t) , Vaccinated infected IV (t) and Vaccinated Recovered 
RV (t)
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According to [51], the mathematical model (8) fore-
casts everyday features. Thus.
R9
+
=

{

ζ ∈ R9
: ζ ≥ 0

}

 and

The method is organized and demonstrates mass 
conservation law; therefore, all Eqs. (8) are summated 
equal to zero. Directly,

indicates that the entire population remains stable.
Now, we may assume that 

∑

∀i

ζ (i) = 1 , where 1 signi-

fies the whole population N (t) . Furthermore, all-state 
variables indicate entire population compartments.

Lemma 3.1 The suggested model (Eq. 8) solution ζ (t) is 
positive, unique, and lies in R9

+
.

Proof All elements are kept in the positive quadrant 
to test the models’ positivity. As a result, the vector field 
tends towards R9

+
 , then.

Note: Detailed theoretical analysis is in Appendix.

Numerical analysis
In numerical analysis, finite-difference methods, net-
work analysis, and fractional-order numerical schemes 
offer distinct approaches to epidemic modeling, each 
with significant differences. Finite-difference methods 
discretize space and time, describing the epidemic model 
dynamics, which are flexible, stable, and relatively sim-
ple to implement, making them suitable for various sce-
narios. On the other hand, network analysis focuses on 
representing populations as interconnected nodes, cap-
turing realistic contact structures. This approach excels 

ζ (t) = [S(t), L(t),E(t), I(t),R(t),V (t),EV (t), IV (t),RV (t)]
T .

ABC

0 D
ǫ
t {S(t)+ L(t)+ E(t)+ I(t)+ R(t)+ V (t)

+ EV (t)+ IV (t)+ RV (t) = 0,

(9)

ABC
0 Dǫ

t S(t) = ldL(t) ≥ 0,

ABC
0 Dǫ

t L(t) = 0,

ABC
0 Dǫ

t E(t) = βS(t)(I(t)+ IV (t))+ (1− q)βL(t)(I(t)+ IV (t)) ≥ 0,

ABC
0 Dǫ

t I(t) = αE(t) ≥ 0,

ABC
0 Dǫ

t R(t) = αI(t) ≥ 0,

ABC
0 Dǫ

t V (t) = δ S(t)− (1− η)βV (t)(I(t)+ IV (t)) ≥ 0,

ABC
0 Dǫ

t EV (t) = (1− η)βV (t)(I(t)+ IV (t)) ≥ 0,

ABC
0 Dǫ

t IV (t) = αEV (t) ≥ 0,

ABC
0 Dǫ

t RV (t) = γ IV (t) ≥ 0.

in modeling heterogeneous connectivity and dynamic 
interactions within complex networks, providing insights 
into the spread of diseases through communities. Frac-
tional-order numerical schemes extend traditional 
calculus to include derivatives of non-integer order, 
enabling the modeling of memory effects and sub- or 
super-diffusive behaviors. This approach is advantageous 
when traditional models struggle to capture long-term 
dependencies in epidemic dynamics. In recapitulation, 
finite-difference methods are versatile and numerically 
stable, network analysis represents complex contact 
structures, and fractional-order schemes provide a more 
nuanced understanding of memory effects in epidemic 
modeling.

Deterministic (ODE)
We have finally finished putting in place all of the nec-
essary analytical structures, which allows us to use an 
explicit finite difference approach to solve the system of 
nonlinear Eq.  (1) numerically; the results are presented 
and discussed below. We started with the assumption 
that S(0) = 0.9998, L(0) = 0.0,E(0) = 0.0, I(0) = 0.0001,

R(0) = 0.0,V (0) = 0.0,EV (0) = 0.0, IV (0) = 0.0001,RV (0) = 0.0.

Erdös and Rényi (ER) random network
The research conducted by Erdös and Rényi on random 
graphs, which involve the random connection of verti-
ces, made a substantial contribution to establishing net-
work science [33, 58]. Although distinct from preexisting 
networks, the random graph model plays a vital role in 
demonstrating the presence of graphs that satisfy specific 
criteria or elucidate nearly ubiquitous characteristics. 
The most straightforward approach to constructing a 
random graph involves establishing connections between 
potential pairs of vertices with a probability p , continu-
ing this process until all pairs have been connected. The 
mathematical expression representing the number of 
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edges in an Erdős-Rényi graph, characterized by N  nodes 
and a given probability p , can be formulated as follows:

where N  is the total number of nodes in the graph and 
p =

�k�
N−1 is the probability that any two nodes will be 

connected by an edge. This equation holds because there 
are N (N−1)

2  possible pairs of nodes in the graph and each 
pair of nodes is connected by an edge with probability p.

Barabasi and Albert (BA) scale‑free network
The mathematical model of network evolution featuring 
hubs and a scale-free degree distribution was proposed 
by Barabasi and Albert [34]. Additional nodes are intro-
duced into an initial nucleus and are selectively con-
nected to pre-existing nodes with more connections. 
The proposed model effectively incorporates the char-
acteristics observed in various networks, encompassing 
domains such as social media, biology, physics, and com-
puter science. The mathematical expression representing 
the number of edges in a Barabási–Albert network, given 
a total of N  nodes, is as follows:

where m is the number of edges added to the graph at 
each time step during the initial growth phase of the 
network.

Fractional‑order (FO)
The numerical methodology for solving nonlinear 
fractional-order differential equations with fractional 
derivatives and non-local, non-singular kernels will be 
developed in this subsection. Now, we will look at the 

nonlinear fractional-order ordinary equation provided 
below to do this:

(10.1)E = N (N − 1)
p

2
.

(10.2)E = m(N − 1),

〈

k
〉

= 2m.

By using the fundamental theorem of fractional calcu-
lus, Eq.  (11.1) can be transformed into a fractional inte-
gral equation as follows:

One can be written Eq.  (11.2) at the point 
tn+1, n = 0, 1, 2, . . . as follows

Using a two-step Lagrange polynomial interpolation, 
one can estimate the function f (v, x(v)), in the interval 
[tk , tk+1] as follows:

Thus, Eq. (11.3) can be written as

Let us assume,

(11.1)
{

ABC
0 Dε

t x(t) = f (t, x(t)),
x(0) = x0.

(11.2)

x(t)− x(0) =
1− ε

ABC(ε)
f (t, x(t))

+

ε

Ŵ(ε)ABC(ε)

t

∫

0

(t − v)ε−1

f (v, x(v))dv.

(11.3)

x(tn+1)− x(0) =
1− ε

ABC(ε)
f (tn, x(tn))+

ε

Ŵ(ε)ABC(ε)

tn+1

∫

0

(tn+1 − v)ε−1
f (v, x(v))dv

=

1− ε

ABC(ε)
f (tn, x(tn))+

ε

Ŵ(ε)ABC(ε)
n

∑

k=0

tk+1

∫

tk

(

tk+1 − v
)ε−1

f (v, x(v))dv.

(11.4)

Pk(v) =
v − tk−1

tk − tk−1
f (tk , x(tk))+

v − tk

tk − tk−1
f
(

tk−1, x
(

tk−1

))

=

f (tk , x(tk))

h

(

v − tk−1

)

+

f
(

tk−1, x
(

tk−1

))

h
(v − tk)

≃

f (tk , xk)

h

(

v − tk−1

)

+

f
(

tk−1, xk−1

)

h
(v − tk).

(11.5)

xn+1 = x0 +
1− ε

ABC(ε)
f (tn, x(tn))

+

ε

Ŵ(ε)ABC(ε)

n
∑

k=0

(

f (tk , xk)

h

tk+1

∫

tk

(

v − tk−1

)

(tn+1 − v)ε−1dv

−

f
(

tk−1, xk−1

)

h

tk+1

∫

tk

(v − tk)(tn+1 − v)ε−1dv

)

.
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Then, we have

Substituting the value of Eqs.  (11.6) and (11.7) in 
Eq. (11.5), we have

Then, for susceptible human compartments, one can 
write,

The remaining compartment’s equations are the same 
as above.

Results and discussion
According to [49], the proposed model is biologically sig-
nificant, and its solution is positive for all t ≥ 0. On top 
of that, specified by the entire population N (t) [12]. In 
accordance, we prove that the proposed model is glob-
ally stable. On top of that, we deduce the point of equi-
librium, which is ε0 =(0, 0, 0, 0, 0, 0, 0, 0, 0). Also, discuss 
the basic and effective reproduction number (see Appen-
dix) and their relationship, the relationship between 
critical vaccine proportion, which demonstrates the real 
scenarios of vaccine efficacy rate and basic reproduction 
number’s value. If policymakers in different countries 
maintain the proposed model’s strategy, they can control 

(11.6)

tk+1

∫

tk

(

v − tk−1

)

(tn+1 − v)ε−1dv = Aε,k ,1,

tk+1

∫

tk

(v − tk)(tn+1 − v)ε−1dv = Aε,k ,2.

(11.7)
Aε,k ,1 = hε+1 (n+ 1− k)ε(n− k + 2+ ε)− (n− k)ε(n− k + 2+ 2ε)

ε(ε + 1)
,

Aε,k ,2 = hε+1 (n+ 1− k)ε+1
− (n− k)ε(n− k + 1+ ε)

ε(ε + 1)
.

(11.8)

xn+1 = x0 +
1− ε

ABC(ε)
f (tn, x(tn))

+

εhε

Ŵ(ε + 2)ABC(ε)

n
∑

k=0

(

f (tk , xk)
(

(n+ 1− k)ε(n− k + 2+ ε)

−(n− k)ε(n− k + 2+ 2ε)
)

− f
(

tk−1, xk−1

)

(

(n+ 1− k)ε+1
− (n− k)ε(n

− (k + 1+ ε)))

(11.9)

Sn+1 = S0 +
1− ε

ABC(ε)
f (tn, S(tn))

+

εhε

Ŵ(ε + 2)ABC(ε)

n
∑

k=0

(

f (tk , Sk)
(

(n+ 1− k)ε(n− k + 2+ ε)

−(n− k)ε(n− k + 2+ 2ε)
)

− f
(

tk−1, Sk−1

)

((n+ 1− k)ε+1
− (n− k)ε(n

−k + 1+ ε)))

the epidemic without making any waves. In addition, we 
also analyzed the LF’s first and second derivatives. The 
second derivative of the LF informs us of the curvature 
based on its sign, whereas the first derivative tells us 
about the progression of the disease. Furthermore, the 
clarification of the proposed system of nonlinear equa-
tions is unique according to [12, 57] (see Appendix).

Initially, we focused on the result of numerical simu-
lation for the time-evolving curve about the endemic 

steadiness of the proposed model. The time series of sus-
ceptible, vaccinated, infected, lockdown, and recovered 

individuals are portrayed in Fig.  2, which presents the 
changing behavior of the controlling parameters δ, η, l, 
and q , respectively. The baseline system values are defined 
as the default case (β = 1.0, γ = 0.1,α = 1/5) presented 
in Fig.  2i. Due to lower vaccine effectiveness and vacci-
nation rate (Fig. 2ii), the disease incidence shows a simi-
lar tendency as in the default case; the vaccine does not 
work. However, Fig.  2iii reveals that increasing the vac-
cination rate and vaccine effectiveness reduced the pick 
of infected individuals and the final epidemic size (recov-
ered). Interestingly, the vaccinated emerges at a sporadic 
peak before stabilizing at equilibrium. As time passes, 
some people cannot maintain their health due to the vac-
cine’s ineffectiveness (50 percent are perfectly immune, 
and the remaining are non-immune).
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Consequently, with the higher rate of the vaccination 
program and the high efficacy rate, the vaccine can con-
trol or eradicate the disease (see Fig. 2iv and v). Besides, 
suppose the vaccine is not available. In that case, the poli-
cymakers of different countries need to require alternate 

policies to control the diseases, such as lockdown, shut-
down, state of emergency, and mask-wearing, that can 
help stop the spread of the COVID-19 virus. To represent 
the impact of lockdown irrespective of vaccination, we 
display Fig. 2vi and vii for the settings q = 0.3 and q = 0.8 

Fig. 2 Final epidemic size (R(∞))  colored with black, suspected susceptible (S(∞))  colored with blue, lockdown (L(∞)) colored with violet, 
infected (I(∞))  colored with red and vaccinated (V(∞)) with green. Parameters used are i β = 1.0, γ = 0.1,α = 1/5, η = 0.0, q = 0.0, l = 0.0 
and δ = 0.0 . ii β = 1.0, γ = 0.1,α = 1/5, η = 0.5, q = 0.0, l = 0.0 and δ = 0.01 . iii β = 1.0, γ = 0.1,α = 1/5, η = 0.8, q = 0.0, l = 0.0 and δ = 0.05 . 
iv β = 1.0, γ = 0.1,α = 1/5, η = 0.95, q = 0.0, l = 0.0 and δ = 0.05. v β = 1.0, γ = 0.1,α = 1/5, η = 0.95, q = 0.0, l = 0.0  and δ = 0.1 . vi 
β = 1.0, γ = 0.1,α = 1/5, η = 0.0, q = 0.3, l = 0.01 and δ = 0.0 . and (vii)  β = 1.0, γ = 0.1,α = 1/5, η = 0.0, q = 0.8, l = 0.01 and δ = 0.0
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Fig. 3 Representation of the disease dynamics infected, vaccinated, and lockdown state individuals in Erdös and Rényi (ER) random and Barabasi 
and Albert (BA) scale-free physical networks for average degree < k >= 4, 8, 16 . The parameter setting in panel A δ = 0.0, η = 0.0, l = 0.0, q = 0.0 , 
B δ = 0.01, η = 0.5, l = 0.0, q = 0.0 , C δ = 0.05, η = 0.95, l = 0.0, q = 0.0 , D δ = 0.0, η = 0.0, l = 0.01, q = 0.3 , E δ = 0.0, η = 0.0, l = 0.01, q = 0.8 
and the remaining parameters value are β = 1.0,α = 0.2, γ = 0.1
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(where l = 0.01 and δ = η = 0 ). As shown in Fig. 2vi, the 
infected individuals remain unchanged with the lower 
lockdown maintain factor q(= 0.3) . However, the num-
ber of infected individuals decreased with increasing q
(Fig.  2vii). Thus, when the lockdown works properly 
(higher q ), people are more compliant with maintain-
ing the lockdown, which reduces the infected number of 
individuals. One interesting phenomenon of multi-wave 
characteristics observed in Fig.  2vii may be directed by 
the lockdown strategy.

In Fig. 3, we conducted a study to examine the impact 
of disease diffusion using two spatial structures: ER-RG 
(Poisson) and BA-SF (power) networks. We consid-
ered five cases with average degree distributions of 
< k >= 4, 8, and 16.

Cases Settings

Panel A δ = 0.0; η = 0.0; l = 0.0; q = 0.0

Panel B δ = 0.01; η = 0.5; l = 0.0; q = 0.0

Panel C δ = 0.05; η = 0.95; l = 0.0; q = 0.0

Panel D δ = 0.0; η = 0.0; l = 0.01; q = 0.3

Panel E δ = 0.0; η = 0.0; l = 0.01; q = 0.8

Upon comparing the results of these cases, we observed 
a significant reduction in infection rates for Panel C when 
using δ = 0.05 and η = 0.95 . Conversely, Panel A expe-
rienced the highest number of infections when no pro-
visions were considered, leading to maximum disease 
spread. Furthermore, in Panel E, we noticed that higher 

q values resulted in increased lockdown measures but 
also contributed to lower infection rates. In our investi-
gation of the different settings involving average degree 
distributions < k > and the two network types (ER-RG 
and BA-SF), we found that ER-RG showed the highest 

Fig. 4 Presented is the final epidemic size (FES) for vaccine 
effectiveness (η) and lockdown maintenance factor (q) . Subpanels 
(A‑*), (B‑*), and (C‑*) show for the lockdown level (l) , whereas panels 
(*‑i), (*‑ii), (*‑iii) vaccination rate (δ) , respectively. Parameters used are 
β = 1.0, γ = 0.1,α = 1/5, l = 0.1, 0.5, 0.9 and δ = 0.1, 0.5, 0.9

Fig. 5 Presented is the vaccination coverage (VC) for vaccine 
effectiveness (η) and lockdown maintenance factor (q) . Subpanels 
(A‑*), (B‑*), and (C‑*) show the lockdown level (l) , whereas panels 
(*‑i), (*‑ii), (*‑iii) vaccination rate (δ) , respectively. Parameters used are 
β = 1.0, γ = 0.1,α = 1/5, l = 0.1, 0.5, 0.9 and δ = 0.1, 0.5, 0.9

Fig. 6 Presented is the lockdown Individuals (LDI) for vaccine 
effectiveness (η) and lockdown maintenance factor (q) . Subpanels 
(A‑*), (B‑*), and (C‑*) show the lockdown level (l) , whereas panels 
(*‑i), (*‑ii), (*‑iii) vaccination rate (δ) , respectively. Parameters used are 
β = 1.0, γ = 0.1,α = 1/5, l = 0.1, 0.5, 0.9  and δ = 0.1, 0.5, 0.9
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infection rate for < k >= 16 in Panel A. BA-SF exhibited 
a similar tendency but with slightly lower infection rates 
for < k >= 16 . However, the infection rates were sig-
nificantly lower when < k > was set to 4 for ER-RG and 
BA-SF, which suggests that reducing the average degree 
in a network (i.e., decreasing the number of connections 
between individuals) leads to a decrease in the infection 
rate. Conversely, higher average degrees result in faster 
disease spread since individuals are more interconnected.

In Panels B and C, we observed that the implementa-
tion of vaccination led to higher vaccination rates in sce-
narios where the average degree distribution was lower. 
This trend can be explained by the fact that individuals 
exhibited reduced interaction rates as the average degree 
decreased. As a result, the average connectivity among 
individuals in the community decreased, leading to the 
emergence of social distancing practices. This combina-
tion of reduced connectivity and social distancing con-
tributed to decreased infection rates and increased the 
number of vaccinated individuals. Consequently, the 
scenario with an average degree of < k >= 4 resulted in 
the fewest individuals being infected, accompanied by 
higher vaccination rates. A similar pattern was observed 
in Panels D and E when the lockdown strategy was imple-
mented. Lower average degree distributions were associ-
ated with a more effective lockdown effect. In such cases, 
lower connectivity and lockdown measures further facili-
tated social distancing and reduced disease transmission. 
Thus, the lower average degree distributions promote 
higher vaccination rates and more effective lockdown 
strategies due to the reduced connectivity among indi-
viduals, which leads to adopting social distancing prac-
tices and results in lower infection rates.

Overall, Figs.  4, 5, and 6 display the 2D heat maps of 
the vaccine efficacy rate ( η ) (x-axis) versus lockdown 
maintenance factor ( q ) (y-axis), which illustrate the 
final epidemic size (FES), vaccination coverage (VC) 
and Lockdown Individuals (LDI), respectively, of the 
epidemic at the equilibrium point t → ∞ . Moreover, 
panels (A-*), (B-*), and (C-*) show the results under the 
lockdown rate l = 0.1, 0.5, and 0.9 , respectively, whereas 
panels (*-i), (*-ii), and (*-iii) present the results for vacci-
nation rate δ = 0.1, 0.5 and 0.9 , respectively. Each panel in 
Fig. 4 is partitioned into two equilibrium states: disease-
free equilibrium (blue) and endemic equilibrium (deep 
red). As expected, reducing vaccine efficacy and lock-
down maintenance factors increased the FES; the disease 
spread quickly. Nevertheless, the opposite tendency was 
found for higher η and q values.

In Fig. 4, panel (A-*) for the fixed lockdown level l = 0.1 
and increasing vaccination program δ = 0.1, 0.5, 0.9 
gradually decreases the FES, as expected. The shape of 
every heat map changed from oblique to almost parallel. 

However, the indisputable fact is that as the lockdown 
level is low, people do not stay at home; as a result, the 
disease spreads to the whole society even if the vaccina-
tion program is increased, a real-world phenomenon. On 
top of that, in comparison with Fig. 4 with Figs. 5 and 6, 
panel (A-*), we see that in Fig. 5, most of the people are 
covered with vaccination (high green), whereas in Fig. 6, 
no people are in the lockdown provision (higher gray). 
Thus, if the lockdown level is low, but the vaccination 
program is increased (no vaccine shortage) with a higher 
efficacy rate, the disease is eradicated from society. In 
this context, the lockdown did not work enough. Again, 
for the fixed vaccination program δ = 0.1 and improving 
the lockdownlevell = 0.1, 0.5, 0.9, Fig.  4, in panels (A(i), 
B(i), C(i)), we see that FES slowly decreases, which is also 
practical. For example, countries like Japan and Bangla-
desh enhanced lower to higher lockdown levels and con-
trolled the COVID-19 pandemic [59, 60]. In comparison 
with Fig. 4 with Figs. 5 and 6, panels (A(i), B(i), and C(i)), 
we see that in Fig. 5, vaccination did not work; a smaller 
number of the total population participates in the vac-
cination program. In contrast, most people are covered 
with the lockdown level (high violet), illustrated in Fig. 6. 
Therefore, if a vaccination program is not high enough, 
i.e., a vaccine shortage exists in a society with a high effi-
cacy rate, higher lockdown levels with high maintenance 
factors help policymakers control the COVID-19 pan-
demic. For example, around 60% of the total population 
of the USA did not agree to take any vaccine and decided 
to maintain the lockdown policy [61]. However, accord-
ing to Fig.  2, a non-pharmaceutical intervention lock-
down is not a permanent solution; it has economic issues. 
It is a one-seasonal solution because those under lock-
down after a certain period become susceptible again, 
confirming that a highly accurate vaccination program is 
a permanent solution for controlling any epidemic.

Figure  4, panel (B-*) illustrates that the increasing 
value of lockdown level l = 0.5 and vaccination program 
δ = 0.1, 0.5, 0.9 decreases the FES quicker than in Fig. 4, 
panel (A-*). Every heat map’s size of the red region area 
unceasingly becomes smaller. When the lockdown level 
is medium with good maintenance and enhancing high 
efficacy vaccination programs, most people stay at home 
and are progressively vaccinated; the disease does not 
spread in society more quickly. Realistically, many coun-
tries (like Bangladesh) policymakers follow this strategy 
step by step to open essential offices/sectors, which also 
helps reduce economic loss [59]. Furthermore, pan-
els (B-*) of Figs. 5 and 6 justify the illustration of Fig. 4, 
panel (B-*), that many people participate in the vaccina-
tion program and come out from the lockdown provision 
day by day to fulfill their daily needs. On the other hand, 
we see that FES reduces significantly for the vaccination 
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program δ = 0.5 and the lockdown level l = 0.1, 0.5, 0.9 , 
Fig.  4, in panels (A(ii), B(ii), C(ii)) as expected. In con-
trast, Figs.  5 and 6 elucidate that vaccination coverage 
(VC) reduces and the number of lockdown individuals 
(LDI) increases. Thus, the medium-level lockdown policy 

with a gradual vaccination program aids in controlling an 
epidemic.

Furthermore, when the lockdown level is high (shut-
down, state of emergency) l = 0.9 and maintenance, 
people who have locked their residences do not move 
elsewhere. In that case, increasing the rate of mass 

Fig. 7 Presented is the final epidemic size (FES) for vaccine effectiveness (η) and lockdown maintenance factor (q) . Subpanels (A‑*), (B‑*), and (C‑*) 
show the results under the lockdown rate l = 0.0, 0.5, 0.9 and vaccination rate δ = 0.9, 0.5, 0.9 , respectively, whereas panels (*‑i), (*‑ii), (*‑iii), (*‑iv) 
and (*‑v) present the results for vaccine availability rate V0 = 0.001, 0.1, 0.5, 0.7, 1.0, β = 1.0, γ = 0.1, andα = 1/5 , respectively

Fig. 8 Presented is the vaccination coverage (VC) for vaccine effectiveness (η) and lockdown maintenance factor (q) . Subpanels (A‑*), (B‑*), 
and (C‑*) show the results under the lockdown rate l = 0.0, 0.5, 0.9 and vaccination rate δ = 0.9, 0.5, 0.9 , respectively, whereas panels (*‑i), (*‑ii), 
(*‑iii), (*‑iv) and (*‑v) present the results for vaccine availability rate V0 = 0.001, 0.1, 0.5, 0.7, 1.0, β = 1.0, γ = 0.1, andα = 1/5 , respectively
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vaccination programs δ = 0.1, 0.5, 0.9 with a high efficacy 
rate considerably diminishes the FES of an epidemic (pre-
sented in Fig.  4, panel C-*) compared to panel B-*, C-*, 
which assists policymakers in managing worst situations 
of the country. The government of India has overcome 
such a situation by applying this policy [62]. Moreover, 
Fig. 5 reveals that in comparison with Fig. 4, the VC por-
tion reduces more than panel B-*, as expected. When any 
region has a higher level of lockdown with maintenance 
and an increasing high-efficacy vaccination program, 
people assume that the epidemic has died out. As stated 
earlier, the multi-waving phenomenon arises in Fig. 2vii. 
On the other hand, Fig. 6 demonstrates that the number 
under the lockdown provision was reduced due to the 
increasing rate of the high-efficacy vaccination program. 
Again, more elevated level vaccination program δ = 0.9 
with efficacy, and for the lockdownlevell = 0.1, 0.5, 0.9, 
Fig. 4, in panels (A(iii), B(iii), C(iii)), we see that FES turns 
into an endemic compared to panel (A-C(i-ii)). On top of 
that, the combined higher effect of the high efficacy vac-
cination program and increasing lockdown level eradica-
tion of the disease more quickly presented in Figs. 5 and 
6, panels (A(iii), B(iii), C(iii)), validated the scenarios of 
Fig. 4, panel (A–C(iii)). Realistically, if 70% of the people 
participate in the vaccination program, the disease auto-
matically becomes controlled, even dying out. However, 
it is not possible for poor, developing, and under-devel-
oping countries, but it is likely for rich countries because 
of economic facts and the availability of vaccines. 

Therefore, the combined effect of the high efficacy vac-
cination program and lockdown level very shortly assists 
policymakers in eradicating the disease from society.

Finally, suppose we concentrate our attention diago-
nally. In that case, the combined effect of the high effi-
cacy of the available vaccination program and lockdown 
level significantly eradicated the FES quickly, as por-
trayed in Fig. 4. On top of that, Figs. 5 and 6 reveal that 
the combined effects work favorably. Moreover, it gives 
policymakers great hope in controlling the transmissible 
disease COVID-19 from society.

Further, Fig. 7 (FES), Fig. 8 (VC), and Fig. 9 (LDI) dis-
play the impact of vaccine shortage, vaccination rate, 
and lockdown effect as a form of 2D heat maps along 
with the vaccine efficacy rate ( η ) (x-axis) versus lock-
down maintenance factor ( q ) (y-axis). Here, panels 
(A-*), (B-*), and (C-*) illustrate the outcomes under the 
settings (l, δ) = (0.0, 0.9), (0.5, 0.5) and (0.9, 0.9) cor-
respondingly, whereas panels (*-i), (*-ii), (*-iii), (*-iv) 
and (*-v) present the results for vaccine availability rate 
V0 = 0.001, 0.1, 0.5, 0.7, and 1.0 , respectively. Figure 7A-i 
and A-ii represents higher FES as the value of V0 = 0.001, 
and V0 = 0.1 when = 0.0, δ = 0.9 , which resulted in a 
significant vaccine shortage. However, the FES reduced 
gradually as the rate of vaccine availability increased, 
displayed in Figs. 7A-iii–A-v ( V0 = 0.5, 0.7, and 1.0 ). Fur-
thermore, if the lockdown strategy is imposed with the 
vaccine program (Fig. 7B-*), it exhibits less FES than the 
no-lockdown policy. Consequently, Fig.  7C-* presents a 

Fig. 9 Presented the lockdown Individuals (LDI) for vaccine effectiveness (η) and lockdown maintenance factor (q) . Subpanels (A‑*), (B‑*), and (C‑*) 
show the results under the lockdown rate l = 0.0, 0.5, 0.9 and vaccination rate δ = 0.9, 0.5, 0.9 , respectively, whereas panels (*‑i), (*‑ii), (*‑iii), (*‑iv) 
and (*‑v) present the results for vaccine availability rate V0 = 0.001, 0.1, 0.5, 0.7, 1.0, β = 1.0, γ = 0.1, andα = 1/5 , respectively
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reduced FES for full lockdown with a complete vaccine 
program. The country’s policymakers impose a 50% lock-
down policy and continue 50% vaccination programs to 
control any epidemic disease when there is a vaccina-
tion shortage. Also, this strategy helps them to minimize 
economic loss. If the lockdown level is more stringent, 
l = 0.9 , and the vaccination rate is mass δ = 0.9 , there is 
no shortage of vaccines, and soon, the pandemic may be 
eradicated. Finally, Figs. 8 and 9 show that vaccinated and 
lockdown individuals reduced the disease when the effec-
tiveness/efficacy and acceptance rate were high. In prac-
tice, if 70% of the people participate in the vaccination 
program, the disease automatically becomes controlled, 
reflecting our current results.

Aside from conventional discussion, the proposed frac-
tional-order model is also numerically simulated, and the 
results are displayed graphically. Let us first introduce the 

numerical method used to solve the model. [49] is uti-
lized to carry out the numerical simulation to solve IVPs 
with ABC derivatives.

Figure 10 depicts the fractional-order derivative simu-
lation curve of infected (Panel A-*), vaccinated (Panel 
B-*), and recovered (Panel C-*) individuals for fractional-
order ε = 0.7, 0.8, 0.9, 1.0 , whereas Fig.  11 represents 
infected (Panel A-*), lockdown (Panel B-*), and recovered 
(Panel C-*). In Fig. 10, panels (*-i), panel (*-ii), and panel 
(*-iii) show the results under the vaccine efficacy rate 
and vaccination rate as, (η, δ) = (0.8, 0.05), (0.95, 0.05) 
and (0.95, 0.1) , respectively, with the remaining param-
eter settings β = 1.0, γ = 0.1,α = 1/5, η = 0.8, q = 0.0, 
l = 0.0.  On the other hand, in Fig.  11, panels (*-i) and 
(*-ii) exhibit the outcomes for lockdown level and 
lockdown maintenance factor (l, q) = (0.01, 0.3) and 

Fig. 10 Presented is the effect of changing the fractional-order ε = 0.7, 0.8, 0.9, 1.0 on the infected (Panel A‑*), recovered (Panel B‑*), 
and vaccinated (Panel C‑*) individuals. Subpanels panel (*‑i), panel (*‑ii), and panel (*‑iii) show the results under the vaccine efficacy 
rate and vaccination rate (η, δ) = (0.8, 0.05), (0.95, 0.05) and (0.95, 0.1) respectively, whereas the remaining parameter settings are 
β = 1.0, γ = 0.1,α = 1/5, q = 0.0, l = 0.0
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(0.01, 0.8),whereas the remaining parameters used are 
β = 1.0, γ = 0.1,α = 1/5, η = 0.0, δ = 0.0.

Fractional-order models consider the possibility that 
individuals can be infected to a fractional degree rather 
than classified as either infected or not infected. It allows 
for a more detailed understanding of the epidemic, 
including the ability to capture subpopulations that may 
be more or less susceptible to the disease. Figure  10, 

panel A, shows that decreasing the fractional-order level 
delays the infection’s peak and makes the curves flat-
ter. However, the vaccinated individuals illustrate the 
opposite trend; increasing the level of fractional-order 
decreases the vaccinated individuals as expected (panel 
C). On top of that, higher vaccine efficacy with higher 
vaccine intake decreases infection and recovers individu-
als as most people participated in the vaccine program. 

Fig. 11 Presented is the effect of changing the fractional-order ε = 0.7, 08, 0.9, 1.0 on the infected (Panel A‑*), recovered (Panel B‑*), and lockdown 
(Panel C‑*) individuals. Subpanels (*‑i), panel (*‑ii), and panel (*‑iii) exhibit the outcomes for lockdown level and lockdown maintenance factor 
(l, q) = (0.01, 0.3) and (0.01, 0.8) , whereas the remaining parameters used are β = 1.0, γ = 0.1,α =

1
5
, η = 0.0, δ = 0.0, l = 0.0
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Finally, Fig. 11 presents the effect of fractional order on 
lockdown, whereas increasing values increase the peak of 
lockdown maintained people.

Conclusion
Overcoming the hazardous situation of epidemic disease, 
we proposed  SLEIRVEV IV RV  epidemic model with a 
vaccination shortage. On top of that, the proposed model 
is biologically significant, and its solution is positive for 
all t ≥ 0. Also, it is specified by the entire population 
N (t) [12]. Moreover, discuss the point of equilibrium, 
R0,Re , the relationship between critical vaccine propor-
tions, and the first and second derivatives of LF. Finally, 
we showed that the proposed model is globally stable. 
For numerical simulation, the finite difference method 
has been applied. Furthermore, the ABC fractional-order 
scheme has been used for fractional-order numerical 
simulation, which delayed the epidemic pick for lower-
order values. In addition, while describing the real-world 
scenarios, the heat maps are pictured even though all 
are assumptions. Realistically, such analysis is essential 
for the current situation to improve the world’s real-life 
situation. Thus, our parametric study suggests that the 
combined effect of the non-pharmaceutical intervention, 
namely, lockdown and mass effective vaccination pro-
gram, is much more effective for eradicating the disease 
from society and economic loss. The above results dem-
onstrate that the lockdown level and more effective vac-
cination program with no shortage assist policymakers 
in discussing the best strategy for combating epidemic 
diseases.

Our study thoroughly analyses the impact of epi-
demic control strategies using three different frame-
works: deterministic, heterogeneous network, and 
fractional order. By considering the same epidemic 
model, we sought to understand how vaccination and 
lockdown strategies interact to combat the spread of 
infectious diseases. The results of our research reveal 
intriguing insights that hold significant implications 
for policymakers and researchers. Through the deter-
ministic approach, we comprehensively understood 
how conventional vaccination and lockdown measures 
can effectively curb the epidemic’s progression. Fur-
thermore, exploring the fractional-order framework 
sheds light on the significance of considering vaccine 
availability and efficacy more nuancedly. The simula-
tions demonstrated that a lower fractional-order could 
delay the epidemic’s peak, emphasizing the impor-
tance of strategically deploying vaccination resources. 
Additionally, incorporating a heterogeneous network 
offered valuable insights into the behavior of individu-
als in society during an epidemic. Understanding the 

dynamics of infection and control strategies through 
the average degree distribution highlighted the sig-
nificance of community structure in shaping the out-
comes of epidemic control measures. The findings from 
our study offer valuable guidance to policymakers and 
researchers, enabling them to make informed deci-
sions and implement dynamic and effective measures 
to combat future epidemics. By recognizing the inter-
play between vaccination, lockdown, and the societal 
context, we can better tailor strategies to mitigate the 
impact of infectious diseases on a global scale. These 
insights can contribute significantly to public health 
efforts, safeguarding communities and saving lives. As 
we continue to face emerging infectious challenges, our 
research lays the foundation for evidence-based poli-
cies that prioritize both individual well-being and the 
collective health of our societies.

Appendix
Mathematical analysis
The present section studies the proposed model’s positiv-
ity and boundedness, basic (R0) reproduction number, 
the threshold of points of equilibrium (disease-free and 
endemic), stability of disease-free (E0) and endemic ( E∗) 
equilibrium point, effective (Re) reproduction number, the 
relation between R0 and crucial harmonies of vaccination, 
the first- and second-order Lyapunov functions (LF), exist-
ence, and uniqueness theorem for validating the model’s 
stability.

Models positivity and boundedness [63–65]
Let the assumed state vector be represented as 
x = (x1, x2, x3, x4, x5, x6, x7, x8, x9) = (S, L,E, I ,R,V ,EV , IV ,RV )  . 
Then, Eq. (1) can be signed as some initial set of values.

It is evident that the above-defined function f is locally 
Lipschitz for the first argument and continuous for the sec-
ond in R9

× R , which implies that the solution x(t) holds 
in t ∈ (0,T ) for some T , according to the system of nonlin-
ear ODEs existence and uniqueness theorem [63, 66]. For 
the invariance of sets under a flow, we used the Bony–
Brezis theorem [67]. The theorem applies to smooth mani-
folds. There are some corner points at the boundary of the 
invariant set. Shortly, by making an argument that if we 
have an initial condition at the corner points, it cannot go 
outside; for instance, the direction of the flow is towards 
the interior at those points. Thus, T  might be re-defined as 
the supremum overall mentioned periods. Finally, for 
T < ∞ , lim

t→T−

� x(t) �→ ∞.

(12.1)x
′
= f (x, t), x(0) = x0.
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We have to show that under the flow x(t) for t ∈ (0,T ), if

the set � is positively invariant, which concludes that 
T = ∞ , i.e., for initial conditions x0 ∈ � , the solution 
x(t) ∈ � holds globally with time [63, 65, 66].

Theorem 1 The closed set.

is entirely uniform under the flow generated by Eqs. 1.1–
1.9. As a result, solution x(t) ∈ � occurs globally in the 
time given initial conditions x0 ∈ �.

Proof Let the boundary segment is �i, i = 1, 2, · · · , 10.

It is evident that ∂� = ∪
10
i=1�i.

To complete the proof of the above invariance of the 
set � , it is enough to prove ∀ inward normal, n.x′(t) ≥ 0 
on ∂�. The inward normal on �i for i = 1, 2, · · · , 9 is 
unambiguously provided by ni = vi = [0 , · · · , 1, · · · , 0], 
where only the i-component is nonzero, but an inward 
normal on �10 is given by n10 = (−1, − 1, · · · , − 1).

Now, on �i for i = 1, 2, · · · , 9

x0 ∈ � =

{

x ∈ R
9
: xi ≥ 0 for i = 1, 2, 3, · · · , 9,

9
∑

i=1

xi ≤ N (0)

}

,

� :={x = (S, L,E, I ,R,V ,EV , IV ,RV )

∈ R
9
: xi ≥ 0 for i = 1, 2, 3,

. . . , 9,

9
∑

i=1

xi ≤ N (0)

}

,

�i = {x ∈ � : xi = 0}, i = 1, 2, . . . , 9

�10 =

{

x ∈ � :

10
∑

i=1

xi = 0

}

.

v1.x
′
= ldx2 ≥ 0, ∀x ∈ �1,

v2.x
′
= lx1 ≥ 0, ∀x ∈ �2,

v3.x
′
= βx1(x4 + x8)+ (1− q)βx2(x4 + x8) ≥ 0, ∀x ∈ �3,

v4.x
′
= αx3 ≥ 0, ∀x ∈ �4,

v5.x
′
= γ x4 ≥ 0, ∀x ∈ �5,

v6.x
′
= δx1 ≥ 0, ∀x ∈ �6,

v7.x
′
= (1− η)βx6(x4 + x8) ≥ 0, ∀x ∈ �7,

v8.x
′
= αx7 ≥ 0, ∀x ∈ �8,

v9.x
′
= γ x8 ≥ 0, ∀x ∈ �9,

while N =

9
∑

i=1

xi is readily seen to satisfy dN
dt

= 0 , which 

follows that on �10 such that

Thus, for given initial conditions x0 ∈ � , solution 
x(t) ∈ � holds globally over time on the positively 
invariant domain �.

Derivation of the basic reproduction number (R0)
Before starting the formal analysis, we will describe 
how the so-called basic reproduction number (R0) is 
computed in detail, which is vital in epidemiological 
modeling because it has been found to help compre-
hend stability conditions. It has been demonstrated 
that stability conditions can be expected if this number 
is less than one, but instability conditions occur if it is 
more significant than one. Nevertheless, it has been 
emphasized that the value can be derived using various 
approaches; among them, the next-generation matrix 
techniques [68] are well-established. Thus, the detailed 
process FV−1

(

≡ F1V
−1
1 , F2V

−1
2

)

 of finding the value of 
the basic reproduction number (R0) is

The eigenvalues of F1V−1
1  are �1 = β

γ
and�2 =

β+(1−q)β
γ

.

Correspondingly, for the vaccination part,

The eigenvalues of F2V−1
2  are �3 = β

γ
and �4 =

(1−η)β
γ

.

Thus, the basic reproduction number (R0) is

n10.x
′
= 0.

F1 =

[

0 β + (1− q)β
0 0

]

,V1 =

[

α 0
−α γ

]

.

∴ F1V
−1
1 =

1

αγ

[

αβ α{β + (1− q)β}
0 0

]

.

F2 =

[

0 β(1− η)

0 0

]

,V2 =

[

α 0
−α γ

]

.

∴ F2V
−1
2 =

1

αγ

[

αβ α(1− η)β

0 0

]

.

(12.2)R0 =
β

γ
+

(1− q)β

γ
+

(1− η)β

γ
.
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Analysis of disease‑free and endemic equilibrium point 
threshold
For this model, the disease-free equilibrium point thresh-
old is the solution of the nonlinear system of Eq.  (1). 
Thus,

gives E0 =
(

S0, 0, 0, 0, 0, V0, 0, 0, 0
)

, the disease-free 
equilibrium point threshold of the current model.

The proposed model endemic equilibrium point 
E∗ = (S∗, L∗,E∗, I∗,R∗,V ∗,Ev∗ , Iv∗ ,Rv∗) is a solution of 
the following system:

Solving the above system of equations setting 
I  = 0, IV  = 0 , the endemic equilibrium point is.

where

dS

dt
=

dL

dt
=

dE

dt
=

dI

dt
=

dR

dt
=

dV

dt
=

EV

dt
=

IV

dt
=

RV

dt
= 0,

0 = −βS(t)(I(t)+ IV (t))− δS(t)− lS(t)+ ldL(t),

0 = lS(t)− (1− q)βL(t)(I(t)+ IV (t))− ldL(t),

0 = βS(t)(I(t)+ IV (t))+ (1− q)βL(t)(I(t)+ IV (t))− αE(t),

0 = αE(t)− γ I(t),

0 = γ I(t),

0 = δS(t)− (1− η)βV (t)(I(t)+ IV (t)),

0 = (1− η)βV (t)(I(t)+ IV (t))− αEV (t),

0 = αEV (t)− γ IV (t),

0 = γ IV (t).

E∗ =

(

S∗, L∗,E∗, I∗,R∗,V ∗,Ev∗ , Iv∗ ,Rv∗
)

,

S∗ =

γ I∗

βI∗ + δ + l
, L∗

=

γ

(1− q)β
−

γ I∗

(1− q)(βI∗ + δ + l)
,

E∗
=

ldL
∗

α
, I∗ =

ldL
∗

γ
,R∗

= ldL
∗

V ∗
=

γ

(1− η)β
,Ev∗ =

δS∗

α
, Iv∗ =

δS∗

γ
,Rv∗ = δS∗.

Stability of disease‑free (E0) equilibrium point
In this section, we will show that for R0 < 1 and R0 > 1 
the disease-free (E0) equilibrium point is asymptotically 
stable locally. The disease will be eradicated and continue 
biologically in society when the primary reproduction 
number is less than and more significant than unity.

Theorem 2 If R0 < 1 , then the unique disease-free equi-
librium E0 is locally asymptotically stable. If R0 > 1 , the 
unique disease-free equilibrium is unstable.

Proof To validate the local stability, the Jacobian matrix 
of the proposed system (1) is.

At the DFE point E0, we have

The characteristic equation |J (E0)− �I | = 0 has nine 
roots, which are �1 = �2 = �3 = 0, �4 = �5 = −α, 
�6 = �7 = −γ , i.e., the first seven eigenvalues are less 
or equal to zero. Thus, the stability of the DFE point 
depends on the remaining two roots ( �8, �9), the solution 
of the following quadratic characteristic equation:

where

It is clear that the coefficients represented above are posi-
tive, i.e., a1 > 0 and a2 > 0 . As a result, it implies that 
ai > 0 for i = 1, 2  are positive and follow the Routh–
Hurwitz criterion [7]. On top of that, we conclude that 

J =





























−β(I + IV )− δ − l ld 0 −βS 0 0 0 −βS 0

l −β(1− q)(I + IV )− ld 0 −β(1− q)L 0 0 0 −β(1− q)L 0

β(I + IV ) β(1− q)(I + IV ) −α βS + β(1− q)L 0 0 0 βS + β(1− q)L 0

0 0 α −γ 0 0 0 0 0

0 0 0 γ 0 0 0 0 0

δ 0 0 −β(1− η)V 0 −β(1− η)(I + IV ) 0 −β(1− η)V 0

0 0 0 β(1− η)V 0 β(1− η)(I + IV ) −α β(1− η)V 0

0 0 0 0 0 0 α −γ 0

0 0 0 0 0 0 0 γ 0





























.

J (E0) =

























−δ − l ld 0 0 0 0 0 0 0
l −ld 0 0 0 0 0 0 0
0 0 −α 0 0 0 0 0 0
0 0 α −γ 0 0 0 0 0
0 0 0 γ 0 0 0 0 0
δ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −α 0 0
0 0 0 0 0 0 α −γ 0
0 0 0 0 0 0 0 γ 0

























.

�
2
+ a1�+ a2 = 0,

a1 = δ + l + ld ,

a2 = δld .
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all eigenvalues �k(k = 4, 5, . . . , 9) calculated from the 
Jacobian matrix at the DFE point have negative real parts. 
Therefore, the model is locally asymptotically stable at 
the unique DFE point whenever R0 < 1  and unstable 
whenever R0 > 1.

Theorem 3 The endemic equilibrium point E∗  is locally 
asymptotically stable and unstable whenever R0 > 1.

Proof
The endemic equilibrium point E∗, the desired Jacobian 

matrix is

The roots of the characteristic equations |J (E∗ − �I7| sat-
isfy the following equation:

where,

a3 = −A11A13 + A13A14 − A12A15 + A11A16 − A13f−

aδ + A13δ − f δ − aω + A13ω − A16ω + δω,

a0 = −A13(A11A14δω + A12A15δω − A11A16δω + A12xδω + A15γ δω + xγ δω + A15δτω + xδτω),

J =































−β(I∗ + I∗V )− δ − l ld 0 −βS∗ 0 0 0 −βS∗ 0

l −β(1− q)(I∗ + I∗V )− ld 0 −β(1− q)L∗ 0 0 0 −β(1− q)L∗ 0

β(I∗ + I∗V ) β(1− q)(I∗ + I∗V ) −α βS + β(1− q)L∗ 0 0 0 βS + β(1− q)L∗ 0

0 0 α −γ 0 0 0 0 0

0 0 0 γ 0 0 0 0 0

δ 0 0 −β(1− η)V ∗ 0 −β(1− η)(I∗ + I∗V ) 0 −β(1− η)V ∗ 0

0 0 0 β(1− η)V ∗ 0 β(1− η)(I∗ + I∗V ) −α β(1− η)V ∗ 0

0 0 0 0 0 0 α −γ 0

0 0 0 0 0 0 0 γ 0































.

(12.3)�
5
+ a4�

4
+ a3�

3
+ a2�

2
+ a1�+ a0 = 0,

a4 = −A11 + A13 − A16 + δ + ω,

a2 =− A11A13A14 − A12A13A15

+ A11A13A16 − A12A13x − A11A13δ

+ A13A14δ − A12A15δ

+ A11A16δ − A13A16δ − A11A13ω

+ A13A14ω − A12A15ω + A11A16ω

− A13A16ω − A15γω − A11δω

+ A13δω − A16δω,

a1 =− A11A13A14δ − A12A13A15δ

+ A11A13A16δ − A12A13xδ

− A12A13eω + A11A13A16ω

− A12A13xω − A13A15γω

− A13xγω − A11A13δω

+ A13A14δω − A12A15δω

+ A11A16δω − A13A16δω − A15γ δω

− A15δτω − A11A13A14ω,

It is simple to demonstrate that all of the roots of 
Eq. (12.3) will have a negative real portion if R0 > 1 and 
that the coefficients of (12.3) will fulfill the Routh–Hur-
witz condition [7]. The endemic equilibrium point will 
thus be locally asymptotically stable for R0 > 1.

Derivation of the effective reproduction number (Re)
In general, a population in the real world can infre-
quently be entirely susceptible to infection. Some 
contacts will be immune because of previous infec-
tions, which have provided long-term immunity or the 
consequence of prior vaccinations. Consequently, all 
communications will not infect, and the mean per sec-
ondary case of disease is less than the number of basic 
reproduction numbers. Thus, the effective reproductive 
number ( Re ) is the mean per infectious case in a popu-
lation of susceptible and non-susceptible people. When 
Re > 1, the number of cases will increase and start an 
epidemic. When Re = 1 , the disease is endemic, and 
when Re < 1 , there will be a decline in the number of 
cases. The effective reproduction number is sensitive to 
the multiple of the basic reproduction number and the 
fraction of the host population. Therefore,

A11 = −βI∗ − x,

A12 = −βS∗,

A13 = (1− η)βI∗,

A14 = (1− η)βV ∗,

A15 = βI∗,

A16 = βS∗ + (1− η)βV ∗
− γ − τ .

(12.4)

Re =
β

γ
S(t)+

(1− q)β

γ
L(t)+

(1− η)β

γ
V (t).
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Relation between R0 and crucial harmonies of vaccination
In the recommended model, βS(t)(I(t)+IV (t))

N  is used to 
compute the sum of secondary infections of susceptible 
and vaccinated infected people per unit of time. On top 
of that, it is equals βS(t)N  for the single infected individual. 
Furthermore, 1

γ
 and β

γ
 indicates the lifespan of an infec-

tious individual and the total secondary infections of sus-
ceptible individuals that may produce one infected 
individual in a disease-free society, respectively, whereas 
for vaccinated individuals, both of the values are 1

γ
 and 

(1−η)β
γ

 . Analogously, secondary infections of vaccinated 
individuals equal βS(t)IV (t)N  and per unit of time, the sum is 
βS(t)
N  . Realistically, due to the mass vaccination rate 1

δ
, the 

basic reproduction number must be a decreasing func-
tion. Opposite scenarios for less vaccine efficacy 
rate(1− η).

The first derivative of the Lyapunov function (LF)
Let us assume models independent variables for the 
endemic LF, {S, L,E, I ,R,V ,EV , IV ,RV }, Lf < 0 is the det-
rimental equilibrium point E∗.

Theorem 4 For the value of the basic reproductive num-
ber R0 − 1 > 0 , the proposed SLEIRVEV IV RV  models 
endemic equilibrium point E∗ is globally asymptotically 
stable.

Proof The LF may be represented as follows to prove 
the theorem above:

(12.5)

Lf (S, L,E, I ,R,V ,EV , IV ,RV )

=

(

S − S
∗
− S

∗ log
S
∗

S

)

+

(

L− L
∗
− L

∗ log
L
∗

L

)

+

(

E − E
∗
− E

∗ log
E
∗

E

)

+

(

I − I
∗
− I

∗ log
I
∗

I

)

+

(

R− R
∗
− R

∗ log
R
∗

R

)(

V − V
∗
− V log

V
∗

V

)

+

(

EV − E
∗

V − E
∗

V log
E
∗

V

EV

)

+

(

IV − I
∗

V − I
∗

V log
I
∗

V

IV

)

+

(

RV − R
∗

V − R
∗

V log
R
∗

V

RV

)

.

Differentiating both sides in terms of t, we get,

From Eq.  (1), putting the value of Ṡ, L̇, Ė, İ , V̇ , ĖV , İV , ṘV  
in Eq. (12.6), we have,

In Eq.  (12.7), substitute S − S
∗, L− L

∗,E − E
∗, I − I

∗,V − V
∗,

EV − E
∗

V
, IV − I

∗

V
,RV − R

∗

V
 instead of S, L,E, I ,R,V ,EV , IV ,RV . 

Then,

(12.6)

dLf

dt
= L̇f =

(

S − S
∗

S

)

Ṡ +

(

L− L
∗

L

)

L̇

+

(

E − E
∗

E

)

Ė +

(

I − I
∗

I

)

İ +

(

R− R
∗

R

)

Ṙ

+

(

V − V
∗

V

)

V̇ +

(

EV − E
∗

V

EV

)

ĖV

+

(

IV − I
∗

V

IV

)

İV +

(

RV − R
∗

V

RV

)

ṘV .

(12.7)

dLf

dt
=

(

S − S∗

S

)

{

−βS(I + IV )− δS − lS + ldL
}

+

(

L− L∗

L

)

{

lS − (1− q)βL(I + IV )− ldL
}

+

(

E − E∗

E

)

{βS(I + IV )+ (1− q)βL(I + IV )− αE}

+

(

I − I∗

I

)

(αE − γ I)+

(

R− R∗

R

)

γ I

+

(

V − V ∗

V

)

{δS − (1− η)βV (I + IV )}

+

(

EV − E∗

V

EV

)

{(1− η)βV (I + IV )− αEV }

+

(

IV − I∗V
IV

)

(αEV − γ IV )

+

(

RV − R∗

V

RV

)

γ IV .
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After simplifying, we may write,

where

(12.8)

dLf

dt
=

(

S − S∗

S

)

[

−β
(

S − S∗
){(

I − I∗
)

+

(

IV − I∗V
)}

− δ
(

S − S∗
)

− l
(

S − S∗
)

+ ld
(

L− L∗
)]

+

(

L− L∗

L

)

[

l
(

S − S∗
)

− (1− q)β
(

L− L∗
){(

I − I∗
)

+

(

IV − I∗V
)}

− ld
(

L− L∗
)]

+

(

E − E∗

E

)

[β
(

S − S∗
){(

I − I∗
)

+

(

IV − I∗V
)}

+ (1− q)β
(

L− L∗
){(

I − I∗
)

+

(

IV − I∗V
)}

− α
(

E − E∗
)

] +

(

I − I∗

I

)

{

α
(

E − E∗
)

− γ
(

I − I∗
)}

+

(

R− R∗

R

)

γ
(

I − I∗
)

+

(

V − V ∗

V

)

[

δ
(

S − S∗
)

− (1− η)β
(

V − V ∗
){(

I − I∗
)

+

(

IV − I∗V
)}]

+

(

EV − E∗

V

EV

)

[

(1− η)β
(

V − V ∗
){(

I − I∗
)

+

(

IV − I∗V
)}

− α
(

EV − E∗

V

)]

+

(

IV − I∗V
IV

)

{

α
(

EV − E∗

V

)

− γ
(

IV − I∗V
)}

+

(

RV − R∗

V

RV

)

γ
(

IV − I∗V
)

.

(12.9)
dLf

dt
= �1 −�2,

�1 = β
(S − S∗)2

S
I∗ + β

(S − S∗)2

S
I∗V + ldL+ ld

S∗

S
L∗ + lS + l

L∗

L
S∗ + β(1− q)LI∗ + β(1− q)LI∗V

+ β(1− q)L∗I + β(1− q)L∗IV + β(1− q)
E∗

E
LI + β(1− q)

E∗

E
LIV + β(1− q)

E∗

E
L∗I∗

+ β(1− q)
E∗

E
L∗I∗V + βSI + βSIV + βS∗I∗ + βS∗I∗V + β

E∗

E
SI∗ + β

E∗

E
SI∗V + β

E∗

E
S∗I + β

E∗

E
S∗IV

+ β(1− q)LI + β(1− q)LIV + β(1− q)L∗I∗ + β(1− q)L∗I∗V + β(1− q)
E∗

E
LI∗ + β(1− q)

E∗

E
LI∗V

+ β(1− q)
E∗

E
L∗I + β(1− q)

E∗

E
L∗IV + αE + α

I∗

I
E∗

+ γ I + γ
R∗

R
I∗ + δS + δ

V ∗

V
S∗

+ β(1− η)
(V − V ∗)2

V
I∗ + β(1− η)

(V − V ∗)2

V
I∗V + β(1− η)

E∗

V

EV
VI∗ + β(1− η)

E∗

V

EV
VI∗V

+ β(1− η)
E∗

V

EV
V ∗I + β(1− η)

E∗

V

EV
V ∗IV + γ IV + γ

R∗

V

RV
I∗V + αEV + α

I∗V
IV

E∗

V ,

and
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It is evident that, dLf
dt

< 0 if �1 < �2. However, for 
S = S

∗, L = L
∗,E = E

∗, I = I
∗,R = R

∗,V = V
∗,EV =

E
∗

V
, IV = I

∗

V
,RV = R

∗

V
 we may write,

We conclude that for the recommended model, the lead-
ing compact invariant set in

�2 = β
(S − S∗)2

S
I + β

(S − S∗)2

S
IV + (δ + l)

(S − S∗)2

S
+ ldL

∗
+ ld

S∗

S
L+ lS∗ + l

L∗

L
S

+ β(1− q)LI + β(1− q)LIV + β(1− q)L∗I∗ + β(1− q)L∗I∗V + β(1− q)
E∗

E
LI∗

+ β(1− q)
E∗

E
LI∗V + β(1− q)

E∗

E
L∗I + β(1− q)

E∗

E
L∗IV + ld

(L− L∗)2

L
+ βSI∗

+ βSI∗V + βS∗I + βS∗IV + β
E∗

E
SI + β

E∗

E
SIV + β

E∗

E
S∗I∗ + β

E∗

E
S∗I∗V + β(1− q)LI∗

+ β(1− q)LI∗V + β(1− q)L∗I + β(1− q)L∗IV + β(1− q)
E∗

E
LI + β(1− q)

E∗

E
LIV

+ β(1− q)
E∗

E
L∗I∗ + β(1− q)

E∗

E
L∗I∗V + α

(E − E∗)2

E
+ αE∗

+ α
I∗

I
E

+ γ
(I − I∗)2

I
+ γ I∗ + γ

R∗

R
I + δS∗ + δ

V ∗

V
S + β(1− η)

(V − V ∗)2

V
I + β(1− η)

(V − V ∗)2

V
IV

+ β(1− η)
E∗

V

EV
VI + β(1− η)

E∗

V

EV
VIV + β(1− η)

E∗

V

EV
V ∗I∗

+ β(1− η)
E∗

V

EV
V ∗I∗V + γ I∗V + γ

R∗

V

RV
IV + αE∗

V + α
I∗V
IV

EV + γ

(

IV − I∗V
)2

IV
+ α

(

EV − E∗

V

)2

EV
.

(12.10)
0 = �1 −�2

⇒

dLf

dt
= 0.

(12.11)

{

(

S∗, L∗,E∗, I∗,R∗,V ∗,E∗

V , I
∗

V ,R
∗

V

)

∈ Ŵ :

dLf

dt
= 0

}

is the endemic equilibrium point {E∗} . Finally, it is evi-
dent that according to Lasalle’s invariance, if �1 < �2 ,  
E∗ is globally asymptotically stable in Ŵ.

The second derivative of the Lyapunov function (LF)
Generally, the first derivative of LF assists research-
ers in checking the global stability of the models. How-
ever, it helps in knowing crucial information like disease 
sequence but not well enough to comprehend the varia-
bilities. As a result, second derivative analysis is essential 
for further information, for example, curvature and sign. 
The second derivative, we believe, will give more details.

(12.12)

dL̇f

dt
=

d

dt

{(

1−
S∗

S

)

Ṡ +

(

1−
L∗

L

)

L̇+

(

1−
E∗

E

)

Ė +

(

1−
I∗

I

)

İ +

(

1−
R∗

R

)

Ṙ+

(

1−
V ∗

V

)

V̇

+

(

1−
E∗

V

EV

)

ĖV +

(

1−
I∗V
IV

)

İV +

(

1−
R∗

V

RV

)

ṘV

=

(

Ṡ

S

)2

S∗ +

(

L̇

L

)2

L∗ +

(

Ė

E

)2

E∗
+

(

İ

I

)2

I∗ +

(

Ṙ

R

)2

R∗
+

(

V̇

V

)2

V ∗
+

(

ĖV

EV

)2

E∗

V +

(

İV

IV

)2

I∗V

+

(

ṘV

RV

)2

R∗

V +

(

1−
S∗

S

)

S̈ +

(

1−
L∗

L

)

L̈+

(

1−
E∗

E

)

Ë +

(

1−
I∗

I

)

Ï +

(

1−
R∗

R

)

R̈
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Here, the second derivative of Eq. (1) is

S̈ = −βṠ(I + IV )− βS
(

İ + İV
)

− δṠ − lṠ + ldL̇

L̈ = lṠ − (1− q)βL̇(I + IV )− (1− q)βL
(

İ + İV
)

− ldL̇

Ë = βṠ(I + IV )+ βS
(

İ + İV
)

+ (1− q)βL̇(I + IV )+ (1− q)βL
(

İ + İV
)

− αĖ

Ï = αĖ − γ İ

R̈ = γ İ

V̈ = δṠ − (1− η)βV̇ (I + IV )− (1− η)βS
(

İ + İV
)

ËV = (1− q)βV̇ (I + IV )+ (1− q)βV
(

İ + İV
)

− αĖV

ÏV = αĖV − γ İV

R̈V = γ İV .

Hence,

(12.13)

dL̇f

dt
=

(

Ṡ

S

)2

S∗ +

(

L̇

L

)2

L∗ +

(

Ė

E

)2

E∗
+

(

İ

I

)2

I∗ +

(

Ṙ

R

)2

R∗
+

(

V̇

V

)2

V ∗
+

(

ĖV

EV

)2

E∗

V +

(

İV

IV

)2

I∗V

+

(

ṘV

RV

)2

R∗

V +

(

1−
S∗

S

)

{

−βṠ(I + IV )− βS
(

İ + İV
)

− δṠ − lṠ + ldL̇
}

+

(

1−
L∗

L

)

{

lṠ − (1− q)βL̇(I + IV )− (1− q)βL
(

İ + İV
)

− ldL̇
}

+

(

1−
E∗

E

)

{

βṠ(I + IV )+ βS
(

İ + İV
)

+ (1− q)βL̇(I + IV )+ (1− q)βL
(

İ + İV
)

− αĖ
}

+

(

1−
I∗

I

)

(

αĖ − γ İ
)

+

(

1−
R∗

R

)

γ İ

+

(

1−
V ∗

V

)

{

δṠ − (1− η)βV̇ (I + IV )− (1− η)βV
(

İ + İV
)}

+

(

1−
E∗

V

EV

)

{

(1− η)βV̇ (I + IV )+ (1− η)βV
(

İ + İV
)

− αĖV
}

+

(

1−
I∗V
IV

)

(

αĖV − γ İV
)

+

(

1−
R∗

V

RV

)

γ İV .
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and

Finally, replacing the value of Ṡ, L̇, Ė, İ , Ṙ, V̇ , ĖV , İV , ṘV  
in equation (A1.14) , we have,

where �1 and �2 are the summation of all positive and 
negative terms.

Therefore,
d2Lf
dt2

> 0 if �1 > �2,
d2Lf
dt2

< 0 if �1 < �2,
d2Lf
dt2

= 0 if �1 = �2.

Existence and uniqueness
The present sub-section examines the existence and 
uniqueness of the proposed model’s solution through the 
concept of classical calculus.

Theorem 5: If  θi and θ i are the positive constants, then.

(i) ∀i ∈ {1, 2, 3, ..., 9}

(12.14)

d2Lf

dt2
= �̇(S, L,E, I ,R,V ,EV , IV ,RV )+

(

1−
S∗

S

)

{

−βṠ(I + IV )− βS
(

İ + İV
)

− δṠ − lṠ + ldL̇
}

+

(

1−
L∗

L

)

{

lṠ − (1− q)βL̇(I + IV )− (1− q)βL
(

İ + İV
)

− ldL̇
}

+

(

1−
E∗

E

)

{

βṠ(I + IV )+ βS
(

İ + İV
)

+ (1− q)βL̇(I + IV )+ (1− q)βL
(

İ + İV
)

− αĖ
}

+

(

1−
I∗

I

)

(

αĖ − γ İ
)

+

(

1−
R∗

R

)

γ İ

+

(

1−
V ∗

V

)

{

δṠ − (1− η)βV̇ (I + IV )− (1− η)βV
(

İ + İV
)}

+

(

1−
E∗

V

EV

)

{

(1− η)βV̇ (I + IV )+ (1− η)βV
(

İ + İV
)

− αĖV
}

+

(

1−
I∗V
IV

)

(

αĖV − γ İV
)

+

(

1−
R∗

V

RV

)

γ İV .

(12.15)d2Lf

dt2
= �1 −�2,

Fig. 12 The reproduction number’s partial rank correlation 
coefficients (PRCCs) and sensitivity to various parameters were 
assessed using baseline values from Table 2. The most influential 
parameters, indicated by their respective PRCC indices, are as follows: 
β(0.638029) , η(−0.451558) , γ (−0.881569) , and q(−0.440801)
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(ii) ∀(x, t) ∈ R
9
× (0,T )

We may represent the current model as follows

To begin, we will show that the given function 
f1(t, S, L,E, I ,R,V ,EV , IV ,RV ) satisfies

Therefore,

(12.17)
∣

∣fi(xi, t)− fi(xi′, t)
∣

∣

2
≤ θi|xi − xi′|

2.

(12.18)
∣

∣fi(xi, t)
∣

∣

2
≤ θ i

(

1+ |xi|
2
)

orθ i|xi|
2.

dS(t)

dt
= −βS(t)(I(t)+ IV (t))− δS(t)− lS(t)+ ldL(t) = f1(t, S, L,E, I ,R,V ,EV , IV ,RV ),

dL(t)

dt
= lS(t)− (1− q)βL(t)(I(t)+ IV (t))− ldL(t) = f2(t, S, L,E, I ,R,V ,EV , IV ,RV ),

dE(t)

dt
= βS(t)(I(t)+ IV (t))+ (1− q)βL(t)(I(t)+ IV (t))− αE(t) = f3(t, S, L,E, I ,R,V ,EV , IV ,RV ),

dI(t)

dt
= αE(t)− γ I(t) = f4(t, S, L,E, I ,R,V ,EV , IV ,RV ),

dR(t)

dt
= γ I(t) = f5(t, S, L,E, I ,R,V ,EV , IV ,RV ),

dV (t)

dt
= δS(t)− (1− η)βV (t)(I(t)+ IV (t)) = f6(t, S, L,E, I ,R,V ,EV , IV ,RV ),

dEV (t)

dt
= (1− η)βV (t)(I(t)+ IV (t))− αEV (t) = f7(t, S, L,E, I ,R,V ,EV , IV ,RV ),

dIV (t)

dt
= αEV (t)− γ IV (t) = f8(t, S, L,E, I ,R,V ,EV , IV ,RV ),

dRV (t)

dt
= γ IV (t) = f9(t, S, L,E, I ,R,V ,EV , IV ,RV ),

(12.19)|f1(S1, t)− f1(S2, t)|
2
≤ θ1|S1 − S2|

2.

|f1(S1, t)− f1(S2, t)|
2
=

∣

∣−β(I + IV )(S1 − S2)− δ(S1 − S2)− l(S1 − S2)
∣

∣

2

=

∣

∣

{

−β(I + IV )− δ − l
}

(S1 − S2)
∣

∣

2

≤

{

2β2
(

|I |2 + |IV |
2
)

+ 2δ2 + 2l2
}

|S1 − S2|
2

≤

{

2β2

(

sup
0≤t≤T

|I |2 + sup
0≤t≤T

|IV |
2

)

+ 2δ2 + 2l2

}

|S1 − S2|
2

≤

{

2β2
||I(t)||2

∞
+ 2β2

||IV (t)||
2
∞

+ 2δ2 + 2l2
}

|S1 − S2|
2

≤ θ1|S1 − S2|
2,

where θ1 = 2β2
||I(t)||2

∞
+ 2β2

||IV (t)||
2
∞

+ 2δ2 + 2l2.

In the same way, the other compartments may be shown 
to meet the inequality mentioned above.

Secondly, we shall demonstrate that

Then,

(12.20)|f1(S, t)|
2
≤ θ1

(

1+ |S|2
)

.
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implies that

where θ1 = 2l2d ||L(t)||
2
∞
.

In the same way, as mentioned earlier, we can also show 
that inequality holds for the other compartments. To 
summarize, our system’s solution exists and is unique, as 
described in [49, 69].

Positivity and boundedness of solutions (network based 
model)
Lemma 1 Let us assume that the solution.

(S1, L1,E1, I1,R1,V 1,E
V

1
, IV
1
,RV

1
, . . . , Sn, Ln,En, In,Rn,Vn,E

V
n , IVn ,RV

n ) of 
the proposed system illustrated in Eq.  (3.1–3.9) for the 
given initial condition in �, where �(0) > 0. Therefore, 
0 < Sk(t) < 1, 0 < Ek(t) < 1, 0 < Ik(t) < 1, 0 <

Rk (t) < 1, 0 < Vk (t) < 1, 0 < E
V

k
(t) < 1, 0 < I

V

k
(t) < 1, 0

< R
V

k
(t) < 1, and�(t) > 0, ∀t > 0 , where 

k = 1, 2, 3, . . . , n.

Proof Firstly, we assume that �(t) > 0, ∀ t > 0 . Then, 
we can write from Eq. (4)

Then, we can write,

|f1(S, t)|
2
=

∣

∣−βS(I + IV )− δS − lS + ldL
∣

∣

2

=

∣

∣

{

−β(I + IV )− δ − l
}

S + ldL
∣

∣

2

≤

{

2β2
(

|I |2 + |IV |
2
)

+ 2δ2 + 2l2
}

|S|2 + 2l2d |L|
2

≤

{

2β2

(

sup
0≤t≤T

|I |2 + sup
0≤t≤T

|IV |
2

)

+ 2δ2 + 2l2

}

|S|2 + 2l2d sup
0≤t≤T

|L|2

≤

{

2β2
(

||I(t)||2
∞

+ ||IV (t)||
2
∞

)

+ 2δ2 + 2l2
}

|S|2 + 2l2d ||L(t)||
2
∞

≤ θ1

(

1+ |S|2
)

,

2β2
(

||I(t)||2
∞

+ ||IV (t)||
2
∞

)

+ 2δ2 + 2l2

2l2d ||L(t)||
2
∞

< 1,

�̇(t) =
1
〈

k
〉

n
∑

k=1

(k − 1)P(k)
[

İk(t)+ İVk (t)
]

=

1
〈

k
〉

n
∑

k=1

(k − 1)P(k)
[

αEk(t)− γ Ik(t)+ αEV
k (t)− γ IVk (t)

]

=

1
〈

k
〉

n
∑

k=1

α(k − 1)P(k)[Ek(t)+ EV
k (t)] − γ�(t).

As �(0) > 0, and �(t) > 0, ∀ t > 0.

According to the initial condition, Ek(0) ≥ 0,EV
k (0) ≥ 0. 

Then from the continuity of exposed individuals 
Ek(t), ∃γ > 0 , which implies that Ek(0) > 0 for t ∈ (0, γ ). 
Therefore, we have to show that Ek(t) > 0∀t. Other-
wise, we can locate t0 ≥ γ > 0 such that Ek(t0) = 0 and 
Ek(t) > 0 for some t ∈ (0, t0). Thus, from the third equa-
tion, we have,

It means the fact that Ek(t0) < 0 for some t ∈ (0, t0) 
seems to be in a contradiction. As a result, Ek(t) > 0∀t. 
The following relationship can be derived from equation 
seven using the positivity of Vk(t),E

V
k (t), and �(t):

Then,

and thus, EV
k (t) > 0∀t.

Analogously, we can write,

�(t) =− γ
t

∫

0

�(u)du+

t

∫

0

α(k − 1)P(k)
〈

k
〉

(

n
∑

k=1

Ek(u)+

n
∑

k=1

E
V

k
(u)

)

du.

Ėk(t) ≥ 0.

ĖV
k (t)+ γEV

k (t) > 0 for t > 0.

EV
k (t) > EV

k (0) exp(−γ t) ≥ 0

Table 2 The sensitivity index is associated with each model 
parameter

Parameter Sensitivity index

β 0.638029

η − 0.451558

γ − 0.881569

q − 0.440801
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Here, the total population, 
Nk (t) = Sk (t)+ Lk (t)+ Ek (t)+ Ik (t)+ Rk (t)+

Vk(t)+ E
V

k
(t)+ I

V

k
(t)+ R

k

k
(t), where k = 1, 2, 3, . . . , n.

Then, Ṅk(t) = Ṡk(t)+ L̇k(t)+ Ėk(t)+ İk(t)+ Ṙk(t)+

V̇k(t)+ Ė
V

k
(t)+ İ

V

k
(t)+ Ṙ

k

k
(t).

Substituting the value of 
Ṡk(t), L̇k(t), Ėk(t), İk(t), Ṙk(t), V̇k(t), Ė

V
k (t), İVk (t), Ṙk

k (t) 
from Eq. (3) in the above equation, we have.
Ṅk(t) = 0∀ t ≥ 0, which assures that the total popula-

tion Nk(t) is constant.
Now,

As

as a result, we accomplish that
 0 < Sk(t) < 1, 0 < Ek(t) < 1, 0 < Ik(t) < 1, 0

< Rk(t) < 1, 0 < Vk(t) < 1, 0 < E
V

k
(t) < 1, 0 < I

V

k
(t)

< 1, 0
〈

R
V

k
(t)

〈

1, and �(t)
〉

0, ∀t
〉

0,
which concludes the proof.

Existence and uniqueness of the fractional‑order derivative 
solutions
Theorem  6 The current model’s kernels of 
Eq.  (8) accomplish prominent Lipschitz continuity 
LCi ≥ 0, i = 1, 2, . . . , 9.

Proof Suppose,

Sk(t), Lk(t), Ik(t),Rk(t), I
V
k (t),RV

k (t) > 0∀t.

Nk(t) =Sk(t)+ Lk(t)+ Ek(t)+ Ik(t)

+ Rk(t)+ Vk(t)+ E
V

k
(t)

+ I
V

k
(t)+ R

k

k
(t) = 1∀t > 0.

Sk(t) > 0, Lk(t) > 0,Ek(t) > 0, Ik(t) > 0,

Rk(t) > 0,Vk(t) > 0,E
V

k
(t) > 0,

I
V

k
(t) > 0,R

k

k
(t) > 0;

ABC
0 Dǫ

t S(t) = −βS(t)(I(t)+ IV (t))− δ S(t)− lS(t)+ ldL(t),

ABC
0 Dǫ

t L(t) = lS(t)− (1− q)βL(t)(I(t)+ IV (t))− ldL(t),

ABC
0 Dǫ

t E(t) = βS(t)(I(t)+ IV (t))+ (1− q)βL(t)(I(t)+ IV (t)) − αE(t),

ABC
0 Dǫ

t I(t) = αE(t)− γ I(t),

ABC
0 Dǫ

t R(t) = γ I(t),

ABC
0 Dǫ

t V (t) = δ S(t)− (1− η)βV (t)(I(t)+ IV (t)),

ABC
0 Dǫ

t EV (t) = (1− η)βV (t)(I(t)+ IV (t))− αEV (t),

ABC
0 Dǫ

t IV (t) = αEV (t)− γ IV (t),

ABC
0 Dǫ

t RV (t) = γ IV (t).

Now,

where LC1 =

{∣

∣

∣

∣

∣

β

(

sup
0≤t≤T

I + sup
0≤t≤T

IV

)∣

∣

∣

∣

∣

+ |δ| +
∣

∣l
∣

∣

}

, 

which implies that

Similarly, we obtain the following inequality if we con-
sider the natural death rates in every compartment.

|f1(S1, t)− f1(S2, t)|=| − β(I + IV )(S1 − S2)

− δ(S1 − S2)− l(S1 − S2)|

=

∣

∣

{

−β(I + IV )− δ − l
}∣

∣(S1 − S2)

≤

{∣

∣

∣

∣

∣

β

(

sup
0≤t≤T

I + sup
0≤t≤T

IV

)∣

∣

∣

∣

∣

+ |δ| +
∣

∣l
∣

∣

}

||S1 − S2||

≤ LC1||S1 − S2||,

(12.21.1)|f1(S1, t)− f1(S2, t)|≤ LC1||S1 − S2| |.

(12.21.2)|f2(L1, t)− f2(L2, t)|≤ LC2||L1 − L2| |,

(12.21.3)|f3(E1, t)− f3(E2, t)|≤ LC3||E1 − E2| |,

(12.21.4)|f4(I1, t)− f4(I2, t)|≤ LC4||I1 − I2| |,

(12.21.5)|f5(R1, t)− f5(R2, t)|≤ LC5||R1 − R2| |,

(12.21.6)|f6(V1, t)− f6(V2, t)|≤ LC6||V1 − V2| |,

(12.21.7)
|f7(EV 1, t)− f7(EV 2, t)|≤ LC7||EV 1 − EV 2| |,

(12.21.8)|f8(IV 1, t)− f8(IV 2, t)|≤ LC8||IV 1 − IV 2| |,

(12.21.9)
|f9(RV 1, t)− f9(RV 2, t)|≤ LC9||RV 1 − RV 2| |.
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Sensitivity analysis
This part is dedicated to examining the sensitivity anal-
ysis pertaining to the basic reproductive number. The 
dynamics of the proposed model are influenced by sev-
eral parameters, which are assigned weights according 
to their sensitivity indices. This study aims to discern 
the key attributes that exhibit high sensitivity concern-
ing the basic reproduction rate and to illustrate the influ-
ence of specific parameters on the trajectory of the basic 
reproductive number, either increasing or decreasing. 
Therefore,

The impact of the lockdown maintenance factor on the 
basic reproduction number is seen to be negative. Hence, 
it can be inferred that the degree of adherence to lock-
down measures or the enhancement of lockdown effec-
tiveness leads to a decrease in the overall disease burden.

From the above equation, it is crystal clear that a vac-
cine’s efficacy has a negative effect on the basic repro-
duction number. Therefore, a highly effective vaccine is 
crucial to eradicate any disease from any society.

The partial rank correlation coefficients (PRCCs)
To determine the parameters of the model that have the 
most effect on the chosen response function, insight-
ful uncertainty, and sensitivity analysis have been applied 
using the Latin Hypercube Sampling technique and par-
tial rank correlation coefficients (PRCCs). The sensitivity 
analysis process involved defining a range (lower and upper 
bounds) and distribution for each model parameter. Sub-
sequently, the matrix of parameter values was systemati-
cally split, and R0 of the model, along with corresponding 
PRCCs, was computed to gauge each parameter’s con-
tribution to uncertainty and variability in R0 . Parameters 
exhibiting high PRCC values near −1 or +1 were deemed 
highly correlated with the response function. Negative 
(positive) PRCC values indicated negative (positive) asso-
ciations with the response function. A positive sensitivity 
index for a model parameter implied that an increase in the 
parameter would raise the basic reproduction number and 
vice versa. Table 2 outlines critical parameters in our pro-
posed model, including transmission (β) , vaccine efficacy 
(η) , recovery (γ ) , and lock-down maintenance (q) rates. 
Examining Fig. 12, it becomes evident that tracking down 
infected individuals and strictly adhering to safety meas-
ures can decrease the disease’s transmission rate (β) . The 
value of η = −0.451558 signifies that R0 decreases by 45% 

∂R0

∂q
= −

β

γ
< 0.

∂R0

∂η
= −

β

γ
< 0.

when η increases by 100%. Similar explanations apply to the 
remaining two parameters.
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