
CORRECTION

Open Access

Check for updates

Saira Parveen Jolly^{1,2*}, Tridib Roy Chowdhury^{1,2}, Tanbi Tanaya Sarker¹ and Kaosar Afsana¹

Correction to: J Health Popul Nutr 42, 127 (2023) https://doi.org/10.1186/s41043-023-00453-8

Following publication of the original article [1], the authors identified errors in Tables 2 and 3. The symbol \pm appeared twice in Table 2 between mean and (95%.) where it shouldn't have been indicated. The sub-header Mean \pm SD was missing from the Table 3 sub-header.

The online version of the original article can be found at https://doi. org/10.1186/s41043-023-00453-8.

*Correspondence: Saira Parveen Jolly saira.jolly@bracu.ac.bd; sairaparveenjolly@gmail.com ¹BRAC James P Grant School of Public Health, BRAC University, 6th Floor, Medona Tower, 28 Mohakhali Commercial Area, Bir Uttom A K Khandakar Road, Dhaka 1213, Bangladesh ²BRAC Research and Evaluation Division, BRAC, 75 Mohakhali, Dhaka 1212, Bangladesh

© The Author(s) 2024. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

The incorrect Table 2:

Table 2 Dietary diversity and nutrients intake and of the adolescent girls by study areas

Variables	Study area		p-value
	Intervention	Comparison	_
	n=811	n=809	
Dietary diversity			
Average number of food groups intake during last 24 hrs, Mean \pm SD**	3.91 ± 1.25	3.97 ± 1.24	0.889
Dietary diversity score during last 24 hrs, n (%) *			
1 –3 food groups (low)	37.85(307)	38.44(311)	0.431
4 –6 food groups (average)	59.93(486)	58.54(472)	
7 –10 food groups (high)	2.22(18)	3.21(26)	
Had vitamin and iron rich foods during last 24 hours			
Vitamin A rich dark green leafy vegetable, n (%) *	20.5 (166)	30.3 (245)	0.000
Organ meat, n (%) *	1.5 (12)	1.2 (10)	0.672
Fish, meat, poultry, n (%) *	73.7 (598)	74.8 (605)	0.630
Average nutrient intake during last one week			
Energy, in kcal/day, Mean(95% CI)**	1344.29(1357.64-1418.94)	1403.61(1375.78-1431.43)	0.468
Protein, in g/day, Mean(95% CI)**	45.61(44.37-46.85)	46.36(45.26-47.46)	0.375
Fat, in g/day, Mean (95% Cl) **	14.28(13.78–14.78)	14.28(13.77-14.29)	0.998
Carbohydrate, in g/day, Mean (95% CI) **	260.37(254.64-266.11)	264.34(258.83-269.84)	0.328
Calcium, in mg/day, Mean (95% Cl) **	635.38(550.01-720.75)	745.07(667.48-822.30)	0.062
Iron, in g/day, Mean (95% CI) **	7.78(7.5-8.07)	8.65(8.22-9.07)	0.001
Zinc, in mg/day, Mean (95% Cl) **	8.85(8.31-8.78)	8.68(8.44-9.07)	0.445
Vitamin A, in µg/day, Mean± (95% Cl) **	167.95(151.88-184.02)	233.01(207.14-258.19)	0.000
Thiamin, in mg/day, Mean (95% Cl) **	1.19(1.16-1.22)	1.18(1.15-1.21)	0.801
Riboflavin, in mg/day, Mean (95% Cl) **	0.64(0.61-0.67)	0.67(0.62-0.71)	0.365
Vitamin C, in mg/day, Mean± (95% Cl) **	65.00(61.06-68.93)	71.09(67.04-75.14)	0.034
Intake iron supplementation			
Intake of iron supplement during last one month, %(n)*	5.2 (42)	4.4(36)	0.493
Frequency of taking iron supplement, %(n)*			
Daily	23.8(10)	38.9(14)	0.322
7 days	33.3(14)	30.6(11)	
<7 days	42.9(18)	30.6(11)	

Hrs=Hours

The correct Table 2:

 Table 2
 Dietary diversity and nutrients intake and of the adolescent girls by study areas

Variables	Study area		p-value
	Intervention n=811	Comparison n = 809	
Dietary diversity			
Average number of food groups intake during last 24 hrs, Mean \pm SD**	3.91 ± 1.25	3.97 ± 1.24	0.889
Dietary diversity score during last 24 hrs, n (%) *			
1 –3 food groups (low)	37.85(307)	38.44(311)	0.431
4 –6 food groups (average)	59.93(486)	58.54(472)	
7 –10 food groups (high)	2.22(18)	3.21(26)	
Had vitamin and iron rich foods during last 24 hours			
Vitamin A rich dark green leafy vegetable, n (%) *	20.5 (166)	30.3 (245)	0.000
Organ meat, n (%) *	1.5 (12)	1.2 (10)	0.672
Fish, meat, poultry, n (%) *	73.7 (598)	74.8 (605)	0.630

Table 2 (continued)

Variables	Study area		p-value	
	Intervention	Comparison	_ ·	
	n=811	n=809		
Average nutrient intake during last one week				
Energy, in kcal/day, Mean(95% Cl)**	1344.29(1357.64-1418.94)	1403.61(1375.78-1431.43)	0.468	
Protein, in g/day, Mean(95% CI)**	45.61(44.37-46.85)	46.36(45.26-47.46)	0.375	
Fat, in g/day, Mean (95% CI) **	14.28(13.78–14.78)	14.28(13.77-14.29)	0.998	
Carbohydrate, in g/day, Mean (95% Cl) **	260.37(254.64-266.11)	264.34(258.83-269.84)	0.328	
Calcium, in mg/day, Mean (95% Cl) **	635.38(550.01-720.75)	745.07(667.48-822.30)	0.062	
Iron, in g/day, Mean (95% CI) **	7.78(7.5–8.07)	8.65(8.22-9.07)	0.001	
Zinc, in mg/day, Mean (95% Cl) **	8.85(8.31-8.78)	8.68(8.44-9.07)	0.445	
Vitamin A, in µg/day, Mean (95% Cl) **	167.95(151.88-184.02)	233.01(207.14-258.19)	0.000	
Thiamin, in mg/day, Mean (95% Cl) **	1.19(1.16–1.22)	1.18(1.15-1.21)	0.801	
Riboflavin, in mg/day, Mean (95% Cl) **	0.64(0.61-0.67)	0.67(0.62-0.71)	0.365	
Vitamin C, in mg/day, Mean (95% Cl) **	65.00(61.06-68.93)	71.09(67.04-75.14)	0.034	
Intake iron supplementation				
Intake of iron supplement during last one month, %(n)*	5.2 (42)	4.4(36)	0.493	
Frequency of taking iron supplement, %(n)*				
Daily	23.8(10)	38.9(14)	0.322	
7 days	33.3(14)	30.6(11)		
	42.9(18)	30.6(11)		

Hrs=Hours

The incorrect Table 3:

The correct Table 3:

Table 3 Nutritional status of the adolescent girls by study area

Variables	Study area	<i>p</i> -value		
	Intervention n=811	Comparison n=809		
Weight in kg	38.36±8.29	38.50±8.85	0.742	
Height in cm	146.57 ± 8.26	146.56 ± 8.46	0.985	
^a MAC in mm	213.56 ± 28.49	213.42 ± 29.72	0.923	
^b BMI in kg/m ²	17.70±2.76	17.74±2.98	0.793	
^c HAZ- score	-1.27 ± 1.07	1.24 ± 1.05	0.516	
^d BMIZ	0.71 ± 1.07	0.72 ± 1.11	0.982	
Hb in g/dl	12.4±1.3	12.3±1.3	0.529	

**Student t test

^aMid arm circumferences

^b BMI=Body Mass Index

^cHeight-for-age Z score

^dBMI-for-age Z score

 Table 3
 Average nutritional status of adolescent girls by study area

Variables	Study area	<i>p</i> -value	
	Intervention n=811	Comparison n=809	
	Mean±SD	$Mean \pm SD$	
Weight in kg	38.36±8.29	38.50 ± 8.85	0.742
Height in cm	146.57 ± 8.26	146.56 ± 8.46	0.985
^a MAC in mm	213.56 ± 28.49	213.42 ± 29.72	0.923
^b BMI in kg/m ²	17.70 ± 2.76	17.74±2.98	0.793
^c HAZ- score	-1.27 ± 1.07	1.24 ± 1.05	0.516
^d BMIZ	0.71 ± 1.07	0.72 ± 1.11	0.982
Hb in g/dl	12.4±1.3	12.3±1.3	0.529

**Student t test

^aMid arm circumferences

^b BMI=Body Mass Index

^cHeight-for-age Z score

^dBMI-for-age Z score

The correct Tables 2 and 3 have been indicated in this correction article and the original article [1] has been corrected.

Published online: 27 June 2024

References

 Jolly SP, Roy Chowdhury T, Sarker TT, et al. Water, sanitation and hygiene (WASH) practices and deworming improve nutritional status and anemia of unmarried adolescent girls in rural Bangladesh. J Health Popul Nutr. 2023;42:127. https://doi.org/10.1186/s41043-023-00453-8.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.