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Abstract

Background: Anaemia and malaria are the leading causes of sub-Saharan African childhood morbidity and
mortality. This study aimed to explore the complex relationship between anaemia and malaria in young children
across the districts or counties of four contiguous sub-Saharan African countries, namely Kenya, Malawi, Tanzania and
Uganda, while accounting for the effects of socio-economic, demographic and environmental factors. Geospatial
maps were constructed to visualise the relationship between the two responses across the districts of the countries.

Methods: A joint bivariate copula regression model was used, which estimates the correlation between the two
responses conditional on the linear, non-linear and spatial effects of the explanatory variables considered. The copula
framework allows the dependency structure between the responses to be isolated from their marginal distributions.
The association between the two responses was set to vary according to the district of residence across the four
countries.

Results: The study revealed a positive association between anaemia and malaria throughout the districts, the
strength of which varied across the districts of the four countries. Due to this heterogeneous association between
anaemia and malaria, we further considered the joint probability of each combination of outcome of anaemia and
malaria to further reveal more about the relationship between the responses. A considerable number of districts had a
high joint probability of a child being anaemic but not having malaria. This might suggest the existence of other
significant drivers of childhood anaemia in these districts.

Conclusions: This study presents an alternative technique to joint modelling of anaemia and malaria in young
children which assists in understanding more about their relationship compared to techniques of multivariate
modelling. The approach used in this study can aid in visualising the relationship through mapping of their correlation
and joint probabilities. These maps produced can then help policy makers target the correct set of interventions, or
prevent the use of incorrect interventions, particularly for childhood anaemia, the causes of which are multiple and
complex.
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Background
Anaemia and malaria are major contributors of child-
hood morbidity and mortality, particularly in sub-Saharan
Africa [1, 2]. The causes of anaemia in children are mul-
tifactorial and include malaria. In regions that are highly
malaria endemic, malaria is one of the most common
causes of childhood anaemia; however, severe anaemia
can augment malaria morbidity and mortality in these
regions [3]. Young children are yet to develop an immunity
tomalaria, therefore aremore vulnerable. This is observed
in the 2018 total malaria deaths worldwide, of which 67%
were young children [4]. A significant proportion of these
deaths are likely due to anaemia, directly or indirectly [5].
Even though significant progress in the fight against

malaria has been made over the past two decades, more
recent years has seen a levelling off to the progress, where
some high-burden countries in Africa have seen a surge
in the number of malaria cases and deaths [4]. Kenya,
Malawi, Tanzania and Uganda were among the 19 coun-
tries that contributed to nearly 85% of the total malaria
cases globally in 2018 [4]. Tanzania and Uganda saw an
increase in the number of malaria cases between 2016 and
2017 and were consequently included in the High Bur-
den to High Impact (HBHI) initiative which was launched
in 2018 by the World Health Organization (WHO) and
the Roll Back Malaria (RBM) Partnership to End Malaria
[4]. The HBHI is a country-led approach to bring the 11
highest malaria burden countries back on track to achiev-
ing the goals of the Global Technical Strategy for Malaria
2016-2030 (GTS) of reducing malaria cases and deaths by
at least 40% by 2020, at least 75% by 2025 and at least 90%
by 2030 [6]. As a result, Uganda saw a significant decrease
in the number of malaria cases in 2018; however, both
Uganda and Tanzania still have a long way to go before
reaching the GTS goals [4].
Anaemia in young children has previously been rec-

ommended as a key indicator to monitor the burden of
malaria and the progress of malaria control; however,
recent years has seen a decline in the awareness and
reporting of this indicator [7]. The surveillance of anaemia
poses challenges due to its multiple causes in children
[8]. In addition, the relationship between malaria and
anaemia can be confounded by several factors, including
nutritional deficiencies (specifically iron deficiency) and
intestinal parasites, all of which contribute to anaemia in
children [5]. Although the global burden of anaemia has
improved significantly since 1990, anaemia in children has
shown much less improvement, thus revealing inconsis-
tencies in the efforts to prevent childhood anaemia [9].
This may also be attributed to the complex multifactorial
causes of anaemia in children which require a solid under-
standing of their contribution to childhood anaemia.
More specifically, an understanding of the underlying
causes and their relationship with anaemia in high-burden

regions will aid in formulating a more targeted approach
for anaemia control.
Many studies have considered the determinants of

anaemia and malaria in children separately [1, 10, 11],
and others have considered them as determinants of each
other where children who tested positive for malaria were
more than 3 times as likely to have anaemia. On the other
hand, researchers have reported that those with anaemia
were more than twice as likely to have malaria [12–16].
This demonstrates the association between the two out-
comes; however, modelling the two jointly would reveal
more about their relationship.
In this study, we made use of a joint model approach

to explore the correlation between anaemia and malaria
in young children across the districts or counties of four
contiguous sub-Saharan African countries, namely Kenya,
Malawi, Tanzania and Uganda, while accounting for the
effects of socio-economic, demographic and environmen-
tal factors. In addition, we made use of maps to visualise
the relationship between the two responses across the dis-
tricts of the countries. To our knowledge, no studies have
jointly modelled anaemia and malaria in children in these
four countries. Thus, this study contributes to a better
understanding of the relationship between anaemia and
malaria in children in these regions of sub-Saharan Africa.

Methods
Study area and data
We used the data collected in the Demographic and
Health Surveys (DHS) and/or the Malaria Indicator Sur-
veys (MIS) from each of the four countries. Specifically,
the data from the 2015 Kenya Malaria Indicator Survey,
the 2017 Malawi Malaria Indicator Survey, the 2015-2016
Tanzania Demographic and Health Survey and Malaria
Indicator Survey and the 2016 Uganda Demographic and
Health Survey. These nationally represented surveys were
designed to collect information on key indicators formon-
itoring and impact evaluation in the areas of population,
health and nutrition by means of multiple questionnaires
such as a household questionnaire, woman’s questionnaire
and man’s questionnaire. In addition, with the consent of
a parent or guardian in the sampled households, all chil-
dren between the ages of 6 and 59 months were tested
for anaemia and malaria using blood specimens collected
from a finger- or heel-prick.

Study variables
The two outcomes of interest were the child’s anaemia sta-
tus and malaria status, where both responses were binary.
The child’s anaemia status was based on the WHO def-
inition for anaemia in children aged 6 to 59 months,
where they were considered anaemic if their haemoglobin
concentration, as measured using a portable HemoCue
analyser, was under 11 g/dl after adjusting for altitude [17].
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The child’s malaria status was based on their rapid diag-
nostic test (RDT) result. This consisted of testing a drop
of blood using the SD Bioline Pf/Pv RDT, which tests for
the presence of the Plasmodium parasite. This type of test
has become more widely used as a diagnostic test where a
reliable microscopy test is not available [18].
The explanatory variables considered in this study were

based on those found in literature to have some asso-
ciation with anaemia and/or malaria, as well as those
expected to be determinants of each outcome. These
variables, which are displayed in Fig. 1, comprised of a
number of demographic, socio-economic and environ-
mental factors, including the gender and age of the child,
the mother’s highest education level, the number of mem-
bers in the household (size of the household), the type of
place of residence (rural or urban), the household wealth
index, the type of toilet facility, the age and gender of
the head of the household and the three environmen-
tal factors: cluster altitude, day land surface temperature
and the enhanced vegetation index, as well as the coun-
try of residence. The household wealth index was based
on the composite measure of a household’s cumulative
living standard and was calculated according to the own-
ership of various household assets [19]. The household
was assigned a standardised score for each asset, then
the scores were summed for each household to obtain a
household wealth index Z-score, which is a continuous
measure and the form of the wealth index used in this
study. The two environmental factors, average day land
surface temperature (LST) and the average enhanced veg-
etation index (EVI) for 2015, were considered as they serve
as proxies for intestinal parasites, which is a risk factor
for childhood anaemia [20]. Moreover, these environmen-
tal factors also impact malaria transmission as they affect
both the Plasmodium parasite and the host (theAnopheles
mosquito). Plasmodium parasites are sensitive to changes
in temperature where their development slows with a drop

in temperature and stops at high temperatures [21]. How-
ever, rainfall expands the breeding ground of themosquito
and also indirectly contributes to the longevity of the
adult mosquito by increasing relative humidity [22]. In
this study, we used the enhanced vegetation index as an
indicator for rainfall, as it is correlated with rainfall [23].

Statistical method
We propose the use of a bivariate copula regression model
to jointly model anaemia and malaria. The model is based
on a pair of responses and a copula specification for the
dependence structure between the two responses [24].
Copulas are functions that enable the separation of the
marginal distributions from the dependence structure of
a given multivariate distribution [25]. The application of
copula regression is diverse. McNeil et al. [26] demon-
strated its use in quantitative risk management, Smith et
al. [27], Madson and Fang [28], and Kürüm et al. [29]
extended the application of copula regression to longitu-
dinal data, where the approach used by Kürüm et al. [29]
allowed for the model parameters to vary with time. De
Leon and Chough [30] discuss further applications of cop-
ula regression to jointly model discrete as well as mixed
outcomes. In addition, copula regression is commonly
used in finance and insurance ([25, 31, 32], and references
therein).

Bivariate copula regression
Suppose Yi1 is the anaemia status of the ith child and Yi2
is the malaria status of the ith child. In this study, each
response is binary where Yij = 1 if the child had anaemia
or malaria; otherwise, Yij = 0, j = 1, 2. The joint proba-
bility of event (Yi1 = 1,Yi2 = 1), conditional on a set of
covariates xi1 and xi2, is defined as follows:

P (Yi1 = 1,Yi2 = 1|xi1, xi2) = C (P (Yi1 = 1|xi1) ,P(Yi2 = 1|xi2); θ) .

(1)

Fig. 1 Potential risk factors of anaemia and malaria among young children
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C : [ 0, 1]2 →[ 0, 1] is a two-place copula function and θ ,
known as the copula parameter, is an association param-
eter which measures the dependence between the two
random variables [33]. If Yi1 and Yi2 were both continu-
ous, the copula C would be unique. However, in the case
of both outcomes being binary, the copula is no longer
uniquely defined [24]. As such, we make use of the latent
(unobserved) variable representation of binary models
where we define a continuous latent variable Y ∗

ij = ηij+εij,
where ηij is the linear predictor consisting of fixed and
random effects as well as non-linear and spatial effects,
and εij is an error term. Therefore, Yij can be regarded as
an indicator variable such that

P
(
Yij = 1|xij

) = P
(
Y ∗
ij > 0|xij

)

= P
(
ηij + εij > 0|xij

)

= P
(
εij > −ηij|xij

)

= 1 − Fj
(−ηij

)
, (2)

where Fj(·) is the cumulative distribution function (CDF)
of a standardised univariate distribution [33]. The copula
approach allows for the specification of different families
for each marginal distribution. In this study, we used the
standard normal distribution for themarginal distribution
of each latent response variable Y ∗

ij , leading to a probit
model. Although using a logit link would not lead to dif-
ferent conclusions, we selected the probit specification as
it is computationally less demanding. Equation 2 can be
represented as

P
(
Yij = 1|xij

) = �
(
ηij

)
, (3)

where �(·) is the CDF of a standard normal distribution.
Therefore, a unit increase in the covariate xijk leads to a βjk
increase in theZ-score for the probability of Y ∗

ij = 1. Thus,
higher values of the estimated coefficients mean that the
event is more likely to happen.

Marginal model specification
In this study, for each marginal model, we considered
the non-linear effects of the continuous covariates. We
incorporated an independently and identically distributed
random effect based on the district in which the child
resided. This random effect, also referred to as an unstruc-
tured spatial effect, accounts for the correlation in the
observations due to unmeasured district-specific factors.
In other words, it accounts for the possibility that chil-
dren residing in the same district would be more alike
than those from different districts. In addition, we further
accounted for spatial variation and spatial autocorrela-
tion in the observations by incorporating a structured
spatial effect, which accounts for the assumption that chil-
dren residing in neighbouring districts are more likely to
have correlated observations. We also incorporated fixed

effects of all the categorical variables as well as the con-
tinuous covariates that did not display a strong non-linear
effect on each response. The resulting model for each
response takes the form of a geoadditive mixed model,
which is an extension of a generalised additive mixed
model (GAMM) [34]. Each marginal model can consist
of different effects. The non-linear effects were estimated
by smooth functions using a regression spline approach,
and the structured spatial effect was estimated using a
Markov random field smoother, which was based on the
neighbourhood structure of the districts across the four
countries. Two districts are considered neighbours if they
share a border. More information on the specification and
estimation of each marginal model can be found in [24].

Copula specification
An advantage of the copula approach to joint modelling is
that the selection of the copula for modelling the depen-
dence between the outcomes is independent of the choice
of the marginal distributions [35]. Several different types
of copulas exist, of which the most common are discussed
in [36] and [37]. To choose the most appropriate cop-
ula, information criteria such as the Akaike information
criterion (AIC) and Bayesian information criterion (BIC)
are used, where the copula producing the lowest of these
values is selected. In our study, the Frank copula pro-
duced the smallest AIC value and thus was selected to
jointly model our responses. The Frank copula is of the
Archimedean class and has the following form:

C (F1 (Yi1) , F2 (Yi2) ; θ) = − 1
θ
ln

[

1 +
(
e−θ×F1 − 1

) (
e−θ×F2 − 1

)

e−θ − 1

]

.

(4)

The copula parameter, θ , is not straightforward to inter-
pret. Therefore, it can be converted into the Kendall cor-
relation coefficient, or Kendall’s tau (τ ∈[−1, 1]), which
is a measure of the degree of concordance [33]. For the
Frank copula, τ can be obtained by solving the following
equation:

D1(θ) − 1
θ

= 1 − τ

4
, (5)

where

D1(θ) = 1
θ

∫ θ

0

t
et − 1

dt. (6)

If τ = 0, then Yi1 and Yi2 are independent. The Frank
copula is comprehensive, which means it covers the full
spectrum of possible values of τ , which is not the case for
all copulas [38].
The copula parameter, θ , may also vary according to dif-

ferent groups of observations. Therefore, θ can be speci-
fied as a function of a linear predictor, such as θi = m (ηi3),
where m is a one-to-one transformation that ensures that
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θi lies in its range, and ηi3 is the linear predictor associ-
ated with the copula parameter [33]. The transformation
applied depends on the specified copula function. This
framework allows one to explore the association between
the two outcomes according to the levels or categories of
certain factors. In this study, we varied the copula param-
eter according to the district of residence to enable us to
determine the districts in which there is a strong associa-
tion between anaemia andmalaria. Conversely, we are also
able to determine the districts in which the association is
weak, therefore suggesting that there are other significant
drivers of anaemia in children in those districts.
We used the R package GJRM (Generalised Joint

Regression Modelling) for the analysis [39]. The mapping
of the results was done in QGIS 3.4 (https://qgis.org/en/
site/index.html), and all the maps created were based on
our results by making use of shapefiles freely available
from the DHS Program’s Spatial Data Repository (https://
spatialdata.dhsprogram.com/boundaries).

Results
Sample characteristics
The total sample size combined was 18196 children
from the four countries. Table 1 shows the observed
anaemia andmalaria prevalence. The observed prevalence
of anaemia from the four countries was 52.5%, while the
malaria prevalence was 19.7%, with a 15.1% prevalence
of both anaemia and malaria. The uncorrected Kendall’s
tau correlation between anaemia and malaria was esti-
mated at 0.239, which was statistically significant at a 5%
significance level.
Table 2 presents the observed prevalence of anaemia,

malaria and both anaemia and malaria according to the
categorical variables of interest. To aid in the assessment
of anaemia as a public health problem, anaemia was cat-
egorized into four by the WHO, where it is considered a
severe health problem if the prevalence is 40% or more,
moderate from 20 to 39.9%, mild from 5 to 19.9%, and
no public health problem if the prevalence is less than
or equal to 4.9% [40]. According to these classifications,
Malawi, Tanzania and Uganda have a severe public health
problem. Kenya had the lowest observed prevalence of

Table 1 Cross-tabulation of the sample according to anaemia
and malaria status

Result of malaria rapid test Total

Positive Negative

Anaemia
status

Anaemic 2750 (15.1) 6809 (37.4) 9559 (52.5)

Non-anaemic 842 (4.6) 7795 (42.8) 8637 (47.5)

Total 3592 (19.7) 14604 (80.3) 18196

anaemia (38.3%), malaria (9.3%) and both (6%) in chil-
dren. No large differences in the prevalence of anaemia or
malaria or both were seen between male and female chil-
dren, as well as between children in households headed
by males or females. The observed prevalence of anaemia,
malaria and both decreased with an increase in educa-
tion level as well as with an improvement in the type of
toilet facility. A considerably higher observed prevalence
of malaria as well as both anaemia and malaria was seen
in children residing in rural areas compared to those in
urban areas.
Boxplots for each of the continuous covariates are pre-

sented in Fig. 2. These boxplots display the minimum,
first quartile, median, third quartile, maximum and the
mean of each covariate based on all the children in the
sample, the children with anaemia, the children with
malaria and the children with both anaemia and malaria.
Children with anaemia had a lower age, on average, com-
pared to those with malaria. Not much difference in the
distributions of the age of the household head and the
household size was seen between the different samples
of children. Children with malaria, on average, resided
in clusters at a lower altitudes. On average, children
with anaemia or malaria or both anaemia and malaria
resided in households with a slightly lower wealth index
compared to the full sample of children. The environ-
mental factor EVI had the highest mean and median
for those children with malaria. Not much difference in
the mean or median of LST was evident between the
samples.

Results of the bivariate copula regression model
Prior to fitting the full bivariate copula model, univariate
logistic regression was used to determine which indepen-
dent variables should be selected to be entered into each
marginal model for each response (anaemia and malaria)
based on a relaxed p value of 20%, where only those with a
p value less than 0.2 were selected. The age of the house-
hold head was the only variable not incorporated into the
marginal model for anaemia, whereas the age and gender
of the household head as well as the child’s gender were
not incorporated into themarginal model for malaria. The
non-linear effect of all continuous covariates (child’s age
in months, household size, wealth index Z-score, cluster
altitude, EVI and LST) on each response was explored.
However, only the child’s age in months showed clear evi-
dence of non-linearity on both responses; thus, it was
the only non-linear effect considered. The remaining con-
tinuous covariates were incorporated into each marginal
model as fixed effects.
The model did not achieve convergence with the inclu-

sion of the country of residence as a fixed effect. We
believe the effect of the country is possibly redun-
dant with the inclusion of the spatial effects at district

https://qgis.org/en/site/index.html
https://qgis.org/en/site/index.html
https://spatialdata.dhsprogram.com/boundaries
https://spatialdata.dhsprogram.com/boundaries
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Table 2 The distribution of children by outcome according to the categorical explanatory variables

Variable Sample size Anaemia (%) Malaria (%) Both (%)

Country

Kenya 3424 1311 (38.3) 317 (9.3) 206 (6.0)

Malawi 2270 1323 (58.3) 601 (26.5) 459 (20.2)

Tanzania 7819 4408 (56.4) 1099 (14.1) 900 (11.5)

Uganda 4683 2517 (53.7) 1575 (33.6) 1185 (25.3)

Gender

Male 9143 4927 (53.9) 1821 (19.9) 1410 (15.4)

Female 9053 4632 (51.2) 1771 (19.6) 1340 (14.8)

Type of place of residence

Urban 4605 2160 (46.9) 292 (6.3) 220 (4.8)

Rural 13591 7399 (54.4) 3300 (24.3) 2530 (18.6)

Mother’s highest education level

No education 2893 1744 (60.3) 705 (24.4) 561 (19.4)

Primary 9757 5253 (53.8) 2013 (20.6) 1565 (16.0)

Secondary and higher 3110 1444 (46.4) 290 (9.3) 194 (6.2)

Unknown 2436 1118 (45.9) 584 (24.0) 430 (17.7)

Type of toilet facilities

No toilet facility 2367 1462 (61.8) 641 (27.1) 521 (22.0)

Pit latrine 14587 7564 (51.9) 2914 (20.0) 2202 (15.1)

Flush toilet 1242 533 (42.9) 37 (3.0) 27 (2.2)

Gender of head of household

Male 13869 7342 (52.9) 2736 (19.7) 2119 (15.3)

Female 4327 2217 (51.2) 856 (19.8) 631 (14.6)

level, as the effect of each country can be obtained by
systematic aggregation of the effects of the districts within
the country. Upon removal of the country effect, the
model achieved convergence and the observed informa-
tion matrix was positive definite. Thus, the results pre-
sented below are based on the model excluding the effect
of the country.

Fixed effects results
Table 3 presents the results of the fixed effects for each
marginal model. Based on these results, children resid-
ing in rural areas had a lower likelihood of malaria
compared to those residing in urban areas; however,
there was no significant difference in the likelihood of
anaemia between these children (rural estimate =− 0.020,
p value = 0.535 for anaemia; rural estimate = 0.299, p
value < 0.001 for malaria). The likelihood of each out-
come significantly decreased with an increase in the
mother’s highest education level. The type of toilet facil-
ities was significantly associated with a child’s anaemia
status, but not their malaria status, where the likelihood

of anaemia decreased with an improvement of the toi-
let facility type (pit latrine estimate = − 0.158, p value
< 0.001; flush toilet estimate = − 0.165, p value = 0.008
for anaemia). An increase in the number of household
members resulted in a significantly higher likelihood of
anaemia; however, it had no significant effect on a child’s
malaria status (household size estimate = 0.009, p value
= 0.006 for anaemia; household size estimate = 0.001, p
value = 0.705 for malaria). A unit increase in the house-
hold’s wealth index Z-score was associated with a sig-
nificant decrease in the likelihood of each anaemia and
malaria (wealth index estimate = − 0.158, p value < 0.001
for anaemia; wealth index estimate = − 0.503, p value
< 0.001 for malaria). Cluster altitude was significantly
associated with each response, where the likelihood of
each decreased with an increase in altitude (cluster alti-
tude estimate = − 0.016, p value = 0.002 for anaemia;
cluster altitude estimate = − 0.089, p value < 0.001
for malaria). EVI was significantly associated with only
malaria, where an increase resulted in an increased likeli-
hood of malaria (EVI estimate = 0.405, p value = 0.001 for
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Fig. 2 Boxplots for the continuous covariates by the outcome categories

malaria). LST was not significantly associated with either
response.

Non-linear and spatial effect results
Table 4 displays the significance of the non-linear and
spatial effects for both responses. Both the structured spa-
tial effect and unstructured spatial effect (the district-level
random effect) had a significant effect on the likelihood
of each response. Further, the child’s age in months had
a significant non-linear effect on the likelihood of each
response. Figure 3 displays this non-linear effect that a

child’s age in months had on anaemia and malaria. The
likelihood of anaemia decreased with an increase in age.
However, there was a reverse effect of age on malaria,
where the chance of malaria increased with an increase in
age.
The district-level structured spatial effect for both

anaemia and malaria is presented in Fig. 4. The districts
in shadings of blue correspond to a negative estimated
effect and were therefore associated with a lower like-
lihood of the event. However, districts in shadings of
red correspond to a positive estimated effect and were
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Table 3 Parameter estimates, standard errors and p values of the fixed effects for the bivariate copula regression model for anaemia
and malaria

Variable
Anaemia Malaria

Estimate St. error p value Estimate St. error p value

Gender (ref =male)

Female − 0.083 0.019 < 0.001∗ NA

Type of place of residence (ref = urban)

Rural − 0.020 0.032 0.535 0.299 0.047 < 0.001∗
Mother’s education level (ref = no education)

Primary − 0.115 0.031 < 0.001∗ − 0.125 0.039 0.001∗
Secondary and higher − 0.164 0.042 < 0.001∗ − 0.250 0.057 < 0.001∗
Unknown − 0.095 0.039 0.016∗ 0.012 0.049 0.802

Gender of household head (ref =male)

Female 0.011 0.024 0.633 NA

Type of toilet facility (ref = no facilities)

Pit latrine − 0.158 0.035 < 0.001∗ − 0.078 0.043 0.072

Flush toilet − 0.165 0.062 0.008∗ 0.102 0.114 0.366

Household size 0.009 0.003 0.006∗ 0.001 0.004 0.705

Wealth index − 0.158 0.019 < 0.001∗ − 0.503 0.029 < 0.001∗
Cluster altitude (in 100m) − 0.016 0.005 0.002∗ − 0.089 0.009 < 0.001∗
EVI 0.068 0.057 0.229 0.405 0.121 0.001∗
LST 0.011 0.015 0.452 0.019 0.033 0.563

NA not applicable as the factor was not incorporated into the marginal model for that response
∗Significant at 5% level of significance

therefore associated with a higher likelihood of the event.
There was a lot less variation observed in the struc-
tured spatial effect for anaemia compared to that for
malaria. The structured spatial effect for malaria revealed
that Tanzania consisted of districts associated with a
lower likelihood of malaria as well as districts associated
with a higher likelihood of malaria. This apparent spa-

Table 4 Approximate significance for the non-linear and spatial
effects

Variable
Anaemia Malaria

Chi-square
value

p value Chi-square
value

p value

Child’s age
in months

1472.50 < 0.001∗ 138.49 < 0.001∗

Unstructured
spatial
effect

357.70 < 0.001∗ 34.75 < 0.001∗

Structured
spatial
effect

183.80 < 0.001∗ 1412.17 < 0.001∗

∗Significant at 5% level of significance

tial variation suggests that it was important to control
for as failure to do so would reduce the statistical power
of inference in the model and therefore lead to inaccurate
results [41].

Conditional dependence of anaemia andmalaria
The copula parameter was set to vary according to the dis-
trict/county of residence across the four countries. This
was done by linking the additive predictor for the cop-
ula parameter to a Markov random field term based on
these districts of residence. The estimated value of the
copula parameter, averaged out over the districts, was
3.07 with a 95% confidence interval of (1.56, 4.61). This
copula parameter, which was estimated conditioned on
the observed covariates and spatial variation, was then
used to estimate Kendall’s τ for each district as shown
in Fig. 5. This figure displayed a fairly heterogeneous,
non-zero association between anaemia and malaria in
young children across the districts. With using the Frank
copula, we allowed for positive and negative associa-
tions between anaemia and malaria. However, Kendall’s
τ ranged between 0.09 and 0.41, with an average of 0.31
and a 95% confidence interval of (0.16, 0.42). Thus, there
was a positive association between malaria and anaemia.
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Fig. 3 Estimated non-linear effect of the child’s age on anaemia (top) and malaria (bottom)

A stronger association was observed in some districts
compared to others. Kenya depicted more districts with
the highest association.
The above result suggests that the probability of a child

being anaemic or having malaria in a particular district
should be based on the joint probability from the bivari-
ate model rather than each independent univariate model.
These joint probabilities can further reveal more about
the relationship between anaemia and malaria in children
across the districts of the four countries.

Estimated joint probability of anaemia andmalaria
Based on the fitted bivariate copula regression model,
the estimated joint probabilities were extracted and

averaged over the districts. Figure 6 shows these joint
probabilities for each combination of outcome for
anaemia and malaria in young children. On the whole,
these joint probabilities were generally heterogeneous
within each country.
Considering image a in Fig. 6, a large number of districts

in Uganda showed a considerably high joint probability
of a child having anaemia and malaria, particularly in the
north/north east of the country. Kenya was homogeneous
in these probabilities, which were also all fairly low (all
were below 0.20). Malawi had a few districts with a rel-
atively high probability of both anaemia and malaria in
children. From image b, we can observe that the majority
of districts in Kenya had a high probability of a child not
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Fig. 4 Estimated effect of the structured spatial effect on anaemia (left) and malaria (right). Top left: Uganda; top right: Kenya; middle: Tanzania; and
bottom Malawi

having anaemia normalaria. This is unsurprising as Kenya
also had the lowest observed prevalence of anaemia and
malaria.
Paying particular attention to image c, throughout the

districts considered in each country, there were a fair
number that displayed a high chance of a child having
anaemia but not malaria. In these districts, it would be
inaccurate to use anaemia as an indicator for malaria as
this image suggests that there are other significant drivers
of anaemia in children in these districts. Image d reveals
very low probabilities of a child having malaria but not
anaemia throughout the majority of the districts. In other
words, it is highly unlikely for a child to have malaria
but not anaemia in these districts. Thus, it is clear that
there is a high likelihood of a child developing anaemia
when they have malaria. Based on images a and d, dis-
tricts in the northern part of Uganda had a relatively
high probability of a child having malaria, regardless of

anaemia status. This is also supported by Uganda having
the highest observed prevalence of malaria.

Discussion
This study aimed to explore the relationship between
anaemia and malaria in young children across the dis-
tricts/counties of Kenya, Malawi, Tanzania and Uganda by
making use of a joint bivariate copula regression model.
This approach allows the correlation between the two
responses to be estimated while controlling for the linear
and non-linear effects of independent variables, as well
as the effect of spatial variation. The copula framework
allows the dependency structure between the responses to
be isolated from their marginal distributions. The advan-
tage of copula regression over multivariate analysis is that
normality and linearity of the dependence between the
responses is not assumed. In fact, in general, dependence
in copulas is non-linear [38]. Further, the appeal of the
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Fig. 5 Estimated Kendall’s τ according to district of residence. Top left: Uganda; top right: Kenya; middle: Tanzania; and bottom Malawi

copula approach is that one is able to vary the association
between the responses according to the different levels of
certain factors, rather than obtaining one estimated value
for the correlation as is the case with a joint multivariate
model [42].
We varied the association according to the district of

residence. This revealed a positive association between
anaemia and malaria throughout the districts, however
the strength of which varied across the districts of the
four countries. Some districts had a stronger associa-
tion between the two responses compared to other dis-
tricts. While we are interested in the likelihood of a child
having both anaemia and malaria, considering the like-
lihood of all combinations of outcomes of these events
can further aid in better understanding the relation-
ship between anaemia and malaria. Therefore, we made
use of the estimated joint probabilities for the combina-
tion of outcomes, which we mapped across the districts.
These maps generally indicated a variation in the joint
probabilities within each country. This suggests that any
approach to anaemia or malaria control should be tar-
geted rather than a country-wide approach. Districts in

the north to north east part of Uganda displayed high
probabilities of a child having malaria, for both those
with or without anaemia. These districts need an up-
scaled targeted approach to malaria control. Districts in
Kenya showed the least amount of variation in some of
the joint probabilities and also had the lowest joint prob-
ability associated with a child having malaria, for those
with or without anaemia. This is as a consequence of the
major progress that Kenya has made in the fight against
malaria, which is most likely owed to the recent malaria
prevention measures that have been tailored to local
needs [43].
If anaemia is to be used as an indicator for the success

of malaria control programmes, in any country, it would
only be useful in areas where there is a strong correlation
between anaemia and malaria as well as a high probabil-
ity of the two. Thus, maps created in this study aid in
identifying such areas. In addition, based on the map of
the joint probability of a child having anaemia but not
malaria, a high likelihood of this event was revealed in
many of the districts. In such districts, it would be reason-
able to assume that there are other drivers of anaemia in



Roberts and Zewotir Journal of Health, Population and Nutrition            (2020) 39:8 Page 12 of 14

Fig. 6 Estimated joint probabilities based on the bivariate copula regression model
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children, other than malaria. Therefore, applying malaria
interventions in these districts to aid in the reduction of
the prevalence of childhood anaemia would be ineffec-
tive. Further investigation into the drivers of childhood
anaemia in these districts is therefore required.
The results of the effects considered in this study are

consistent with those from other studies that modelled
anaemia and malaria separately, where the child’s age,
mother’s education level, household wealth index and
cluster altitude were significantly associated with both
anaemia and malaria status [10, 11, 44, 45]. The child’s
gender, the household size and the type of toilet facil-
ity were further significantly associated with anaemia in
children, as seen in other studies [46, 47]. No toilet facil-
ity or unimproved toilet facilities (such as an open pit or
bucket) can lead to poor sanitation, which creates an envi-
ronment supportive of hookworms, an intestinal parasite
that contributes to anaemia in children [48].
Very few studies have jointly modelled anaemia and

malaria. The studies that have done so have also utilised
different techniques and thus answered different ques-
tions [3, 49]. A bivariate probit model was used to jointly
model anaemia and malaria in individuals between the
ages of 15 and 60 in Alaba District, Southern Ethiopia,
the result of which showed a positive correlation between
malaria and anaemia; however, the magnitude of the cor-
relation was not explored [49]. Similar to our study, [3]
jointly modelled anaemia and malaria in children under
5 in Nigeria and found substantial geographical varia-
tions in the likelihood of malaria; however, the asso-
ciation between anaemia and malaria was not directly
explored.
As multiple factors were significantly associated with

both anaemia and malaria, accordingly, we propose fur-
ther varying the association parameter by the levels of
these factors. For example, the additive predictor for the
copula parameter can include the effects of the mother’s
education level in addition to the district-level structured
spatial effect. The correlation and joint probabilities can
then be estimated according to the levels of the addi-
tional factors, which will further reveal more about the
relationship between anaemia and malaria.
A limitation of this study includes the use of cross-

sectional data; thus, a causal relationship could not be
determined. Furthermore, a lack of data on important fac-
tors of anaemia in children, such as iron deficiency and
intestinal parasites, may restrict the findings of this study.

Conclusion
This study presents an alternative technique to joint mod-
elling of anaemia and malaria in young children which
assists in understanding more about their relationship
compared to techniques of multivariate modelling. The
approach used in this study can aid in visualising the

relationship through mapping of their correlation and
joint probabilities. These maps produced can then help
policy makers target the correct set of interventions, or
prevent the use of incorrect interventions, particularly for
childhood anaemia, the causes of which are multiple and
complex.
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